Answer: There are five significant figures in 865,010.
Explanation:
When a degree of accuracy is stated by each digit present in a mathematical figure then it is called a significant figure.
Rules for counting significant figures is as follows.
- Any non-zero digits and zeros present between a non-zero figure are counted. For example, 3580009 has seven significant figures.
- Trailing zeros are counted in a non-zero figure. For example, 0.00250 has three significant figures.
- Leading zeros are not counted. For example, 0.0025 has two significant figures.
So, in the given figure 865010 has five significant figures and the trailing zero will not be counted.
Thus, we can conclude that there are five significant figures in 865,010.
Free energy is the answer i hope this helped
An electrolyte is a term used to describe a compound that can dissociate into ions as it is nothing but an ionic compound, a salt made up of a positively charged cation and negatively charged anion.
Here the correct answer is D. Since there are no hydrocarbons or any other organic compound, that do not possess partial let alone full charges, all of them can dissociate in solution to give their ions.
This allows for the solution to be able to conduct electricity.
Answer:
When hydrogen gas combines with nitrogen to form Ammonia the following chemical reaction will take place. Our equilibrium reaction will be N2(g) + 3H2(g) ⇔ 2NH3(g) + Heat. In this case, Hydrogen and nitrogen react together to form ammonia.
Explanation:
Answer:
0.161moles
Explanation:
Given parameters:
Mass of Fe = 18g
Oxygen gas is in excess
Unknown:
Number of moles of Fe₂O₃ produced = ?
Solution:
To start with, let us write a chemically balanced equation before proceeding to understand the nuances of this problem.
4Fe + 3O₂ → 2Fe₂O₃
In the equation above above, 4 mole of iron combined with 3 moles of oxygen gas to 2 moles of Fe₂O₃.
In solving this problem, we can identify that Fe is the limiting reactant since we have been told oxygen gas is in excess. The suggests that the extent to which the product is formed and the reaction proceeds hinges on the amount of Fe we have.
It is best to work from the given, or known reactant to the unknown
The known in this scenario is the mass of Fe. Let us find the number of moles of this specie;
Number of moles of Fe = 
Molar mass of Fe = 56g/mol
Number of moles =
= 0.32mol
Using this known number of moles of Fe, we can relate it to that of the unknown amount of the product and obtain the number of moles.
4 moles of Fe produced 2 moles of Fe₂O₃
0.32 moles of Fe will produce
= 0.161moles