Answer: 250 kJ
Explanation: According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to Hess’s law, the chemical equation can be treated as algebraic expressions and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
(1)
(2)
Net chemical equation:
(3)
Adding 1 and 2 we get,
(4)
Now dividing equation (4) by 4, we get
(4)
Answer:
Electrons in a hydrogen atom must be in one of the allowed energy levels. If an electron is in the first energy level, it must have exactly -13.6 eV of energy.
...
Energy Levels of Electrons.
Energy Level Energy
1 -13.6 eV
2 -3.4 eV
3 -1.51 eV
4 -.85 eV
The binding energy in MeV per atom is - 63284.56 Mev.
The amount of energy needed to detach a particle from a system of particles or to disperse every particle in the system is known as the binding energy. Subatomic particles in atomic nuclei, electrons attached to atom's nuclei, and atoms and ions bonded together in crystals are three examples of where binding energy is very relevant.
If we have a nucleus with Z protons and N neutrons and mass MA, where A = Z + N then its binding energy in MeV is given by: Eb(MeV) = (Zmp + Nmn - MA) x 931.494 MeV/u
Mass of atom = 69.955264 amu
Mass of proton = 1.007825 amu
Mass of neutron = 1.008665 amu
Binding energy, Mev = (Zmp + Nmn - M) × 931.494MeV/u
= ( 1.007825 + 1.008665 - 69.955264) × 931.494
= - 67.938774 × 931.494
= - 63284.56 Mev
Therefore, the binding energy in MeV per atom is - 63284.56 Mev.
Learn more about binding energy here:
brainly.com/question/16795451
#SPJ4
Answer:
<h2>
= (
1.08 /
2.2
) 100% = 49%</h2>
Explanation:
Balanced Equation: 2CH₃CH₃(g) + 5O₂(g) → 2CO₂(g) + 6H₂O(g)
Calculate moles of CH₃CH₃ and O₂
1.2 ₃₃ (
1 ₃₃/
30.0694 ₃₃
) = 0.040 ₃₃
8.6 ₂ (
1 2/
31.998 ₂
) = 0.27 ₃₃
Find limiting reagent 0.040 ₃₃ (
5 ₂/
2 ₃₃
) = 0.10 ₂
CH₃CH₃ is the limiting Reagent
CH₃CH₃ (L.R.) O₂ CO₂ H₂O
Initial (mol) 0.040 0.27 0 0
Change
(mol)
-2x=-0 -5x=
-0.10 +2x=+0.040 +6x=+0.12
Final (mol) 0 0.117 0.040 0.12
0.040 − 2 = 0 = 0.020
Determine percent yield
0.12 ₂ (
18.0148 ₂
/1 ₂
) = 2.2 ₂
= (
1.08 /
2.2
) 100% = 49%
Answer: -
H₂ will diffuse the fastest.
Explanation: -
According to Graham's Law of Diffusion
The rate of diffusion is inversely proportional to the square root of it's density or molar mass. So the lower the molar mass faster the rate of diffusion.
Molar mass of Ne = 20 g / mol
Molar mass of CH₄ = 12 x 1 + 1 x 4 = 16 g /mol
Molar mass of Ar = 40g / mol
Molar mass of H₂ = 1 x 2 = 2 g / mol
Thus H₂ will diffuse the fastest.