Answer and Explanation:
The resonance contributor in cyclopentadienone (as shown in the attachment below) results into the compound having a positive charge on the carbonyl group, C=O which accounts for a highly reactive anti-aromatic 4π system. And this illustrates the reason for its instability.
Answer:
(A) 4.616 * 10⁻⁶ M
(B) 0.576 mg CuSO₄·5H₂O
Explanation:
- The molar weight of CuSO₄·5H₂O is:
63.55 + 32 + 16*4 + 5*(2+16) = 249.55 g/mol
- The molarity of the first solution is:
(0.096 gCuSO₄·5H₂O ÷ 249.55 g/mol) / (0.5 L) = 3.847 * 10⁻⁴ M
The molarity of CuSO₄·5H₂O is the same as the molarity of just CuSO₄.
- Now we use the dilution factor in order to calculate the molarity in the second solution:
(A) 3.847 * 10⁻⁴ M * 6mL/500mL = 4.616 * 10⁻⁶ M
To answer (B), we can calculate the moles of CuSO₄·5H₂O contained in 500 mL of a solution with a concentration of 4.616 * 10⁻⁶ M:
- 4.616 * 10⁻⁶ M * 500 mL = 2.308 * 10⁻³ mmol CuSO₄·5H₂O
- 2.308 * 10⁻³ mmol CuSO₄·5H₂O * 249.55 mg/mmol = 0.576 mg CuSO₄·5H₂O
Heat and light- The sun because it gives us daylight and it produces heat. These arent made by a chemical reaction when it comes to the sun.
Electrons are the only parts of an atom that can make a chemical bond.