Answer:
∴ΔH₂ = - 12,258 KJ
Explanation:
Enthalpy:
Enthalpy is a property of a thermodynamic system. Enthalpy of a system is equal to the sum of internal energy of the system and presser times volume of the system.
The heat absorbes or releases in a closed system is the change of enthalpy of the system.
Given reactions are:
Reaction 1: C₃H₈(g)+5O₂(g)→ 3CO₂(g)+4H₂O, ΔH₁= - 2043 KJ
Reaction 2: 6C₃H₈(g)+30 O₂(g)→ 18 CO₂(g)+24 H₂O, ΔH₂=?
Take a look at reaction 1 and reaction 2, the only difference is that 1 molecule of C₃H₈ is combusted in reaction 1 and 6 molecules of C₃H₈ is combusted in reaction 2.
We can think the reaction 2 as occurring 6 different container and each containers contains 1 molecule of C₃H₈. The enthalpy is an extensive property. Total enthapy of the 6 containers is = 6×(-2043 KJ)
= - 12,258 KJ
∴ΔH₂ = - 12,258 KJ
Storm clouds being formed will most likely occur in this scenario.
<h3>What are Storm clouds?</h3>
These are formed during the process of convection in which heat and moisture is transported upward into the atmosphere.
We were told that the weather is warm and cold air will enter the region which means that it will replace the heat and moisture as they move upwards thereby resulting in the formation of storm clouds.
Read more about Storm clouds here brainly.com/question/8240176
Answer:
The answer to your question is V = 19.9 L
Explanation:
Data
mass of Al = 8.60 g
volume of H₂ = ?
Balanced chemical reaction
2Al + 6HCl ⇒ 2AlCl₃ + 3H₂
1.- Use proportions to calculate the mass of H₂ produced
Atomic mass of Al = 2 x 27 = 54 g
Atomic mass of H₂ = 6 x 1 = 6 g
54 g of Al -------------------- 6 g of H₂
8 g of Al ------------------- x
x = (8 x 6) / 54
x = 48 / 54
x = 0.89 g of H₂
2.- Calculate the volume of H₂
- Convert the H₂ to moles
1 g of H₂ --------------- 1 mol
0.89 g ---------------- x
x = 0.89 moles
1 mol of H₂ -------------- 22.4 l
0.89 moles ------------- x
x = (0.89 x 22.4) / 1
x = 19.9 L
Answer:
V = 5.17L
Explanation:
Mass of gas = 8.7g
T = 23°C = (23 + 273.15)K = 296.15K
P = 1.15 atm
V = ?
R = 0.082atm.L / mol.K
From ideal gas equation
PV = nRT
P = pressure of the gas
V = volume of the gas
n = no. Of moles
R = ideal gas constant
T = temperature of the gas
no of moles = mass / molar mass
Molar mass of Chlorine = 35.5g / mol
No. Of moles = 8.7 / 35.5
No. Of moles = 0.245 moles
PV = nRT
V = nRT / P
V = (0.245 * 0.082 * 296.15) / 1.15
V = 5.9496 / 1.15
V = 5.17L
The volume of the gas is 5.17L