Answer:
3rd option: B(C)= 1.79C +86.03
Step-by-step explanation:
Total bill
= cost of cans(number of cans) +cost of other groceries
Let the cost of other groceries be G, and the cost of cans be X.
Given that number of cans= C,
Total bill= XC +G
If 2 cans were purchased,
2X+G= 89.61 -----(1)
If 5 cans were purchased,
5X +G= 94.98 -----(2)
(2) -(1):
(5X +G) -(2X +G)= 94.98 -89.61
5X +G -2x -G= 5.37
3X= 5.37
X= 5.37 ÷3 <em>(</em><em>÷</em><em>3</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>)</em>
X= 1.79
Subst. X= 1.79 into (1):
2(1.79) +G= 89.61
3.58 +G= 89.61
G= 89.61 -3.58 <em>(</em><em>-3.58</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>)</em>
G= 86.03 <em>(</em><em>simplify</em><em>)</em>
Total bill
= XC +G
= 1.79C +86.03
Thus, the function is B(C)= 1.79C +86.03.
Answer:
C
Step-by-step explanation:
$6500 is a one time purchase so there is no variable attached.
$550 and $900 per week is reoccurring so there will be a variable attached.
Since $900 is what she is making each week, this will be separate from her costs (can eliminate D).
To make a profit, her amount earned will need to be greater than her expenses, so the answer is C.
Answer:
7
Step-by-step explanation: calculate the prime factors of 7 and 21, than find the greatest common factor
Lets see
a and b are legs
c=hypotnuse
a^2+b^2=c^2
10^2+b^2=10^2
100+b^2=100
minus 100 both sides
b^2=0
b=0
false, if you have a leg legnth 0, then they lines are right on top of each other
no cannot
Step-by-step explanation:

According to this trigonometric function, −C gives you the OPPOSITE terms of what they really are, so be EXTREMELY CAREFUL:
![\displaystyle Phase\:[Horisontal]\:Shift → \frac{0}{\frac{1}{7}} = 0 \\ Period → \frac{2}{1}π = 2π](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Phase%5C%3A%5BHorisontal%5D%5C%3AShift%20%E2%86%92%20%5Cfrac%7B0%7D%7B%5Cfrac%7B1%7D%7B7%7D%7D%20%3D%200%20%5C%5C%20Period%20%E2%86%92%20%5Cfrac%7B2%7D%7B1%7D%CF%80%20%3D%202%CF%80)
Therefore we have our answer.
Extended Information on the trigonometric function
![\displaystyle Vertical\:Shift → D \\ Phase\:[Horisontal]\:Shift → \frac{C}{B} \\ Period → \frac{2}{B}π \\ Amplitude → |A|](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Vertical%5C%3AShift%20%E2%86%92%20D%20%5C%5C%20Phase%5C%3A%5BHorisontal%5D%5C%3AShift%20%E2%86%92%20%5Cfrac%7BC%7D%7BB%7D%20%5C%5C%20Period%20%E2%86%92%20%5Cfrac%7B2%7D%7BB%7D%CF%80%20%5C%5C%20Amplitude%20%E2%86%92%20%7CA%7C)
NOTE: Sometimes, your <em>vertical shift</em> might tell you to shift your graph below or above the <em>midline</em> where the amplitude is.
I am joyous to assist you anytime.