Answer to A spring<span> is </span>stretched<span> to a </span>displacement<span> of </span>3.4 m<span> from </span>equilibrium<span>. </span>Then<span> the </span>spring<span> is</span>released<span> and ... </span>Then<span> the </span>spring<span> is </span>released<span> and </span>allowed<span> to </span>recoil<span> to a </span>displacement<span> of </span>1.9 m<span> from</span>equilibrium<span>. The </span>spring constant<span> is </span>11 N/m<span>. What </span>best describes<span> the </span>work involved<span> as the </span>spring recoils<span>? A)87 J of </span>work<span> is performed ...</span>
The correct answer is letter A. 6 millimeters. <span>If an object 18 millimeters high is placed 12 millimeters from a diverging lens and the image is formed 4 millimeters in front of the lens, the height of the image is 6 millimeters.
</span>
Solution:
18 / x = 12 / 4
12x = 72
x = 6mm
Answer:
Magneta is a mix of blue and red and is a secondary colour.
Explanation:
As we can see green is the complementary colour of Magneta.Complementary colours are the pairs of colours which when combined cancel each other out. This means that when combined they produce a grayscale colour like white or black .
Answer:
The answer is A.
Explanation:
Hypertrophy is an increase and growth of muscle cells. Hypertrophy refers to an increase in muscular size achieved through exercise. When you work out, if you want to tone or improve muscle definition, lifting weights is the most common way to increase hypertrophy.
Hope that helped.
Answer:
1) λ = 0.413 m
, 2)v = 25,213 m / s
, 3) T = 0.216 N
, 4) m = 22.04 10-3 kg
Explanation:
1) The resonance occurs when the traveling wave bounces at the ends and the two waves are added, the ends as they are fixed have a node, the wavelength and the length of the string are related
λ = 2L / n n = 1, 2, 3 ...
In this case L = 0.62 m and n = 3
Let's calculate
λ = 2 0.62 / 3
λ = 0.413 m
2) the velocity related to wavelength and frequency
v = λ f
v = 0.413 61
v = 25,213 m / s
3) let's use the equation
v = √T /μ
T = v² μ
T = 25,213² 3.4 10⁻⁴
T = 0.216 N
4) the rope tension is proportional to the hanging weight
T-W = 0
T = W
W = m g
m = W / g
m = 0.216 / 9.8
m = 22.04 10-3 kg
5) n = 2
λ = 2 0.62 / 2
λ = 0.62 m
6) v = λ f
v = 0.62 61
v = 37.82 m / s
7) T = v² μ
T = 37.82² 3.4 10⁻⁴
T = 0.486 N
8) m = W / g
m = 0.486 / 9.8
m = 49.62 10⁻³ kg
9) n = 1
λ = 2 0.62
λ = 1.24 m
v = 1.24 61
v = 75.64 m / s
T = v² miu
T = 75.64² 3.4 10⁻⁴
T = 2.572 10⁻² N
m = 2.572 10⁻² / 9.8
m = 262.4 10⁻³ kg