<span>A material through which a current does not move easily is called
an insulator.
Technically, charges CAN move through an insulator, but they lose
a lot of energy doing it, so the current that flows through the insulator
is very very small, usually too small to even measure.
Another way to look at it: Insulators have high resistance.
</span>
Answer:

Explanation:
To solve this equation we will have to consider that the bubble is filled with an Ideal Gas and as such we can use the Ideal Gas Law

Where
= Pressure
= Volume
= Moles
= Ideal Gas Constant
= Temperature
Now since we know that the value for the temperature and moles is constant we can simply use Boyles Law for the two states

Let us look at the two states
State 1 (at top)
Pressure = 
Volume = 
State 2 (at bottom)
Pressure = 
Where
= Density of liquid (1000 kg/m³)
= Acceleration due to gravity (9.8 m/s²)
= Height of liquid (0.200 m)
Pressure = 
Volume = 
Inputting these values into the Boyles Law

The letter “j” is never found on the periodic table. As for numbers, there’s an infinite amount
Answer:
e.)At twice the distance, the strength of the field is E/4.
Explanation:
The strength of the electric field at a certain distance from a point charge is given by:

where
k is the Coulomb's constant
Q is the charge
r is the distance from the point charge
In this problem, the distance from the point charge is doubled:
r' = 2r
So the new electric field strength is

so, at twice the distance the strength of the field is E/4.