Kinetic energy is energy that comes from motion. Anything that is currently in motion has kinetic energy.
Let’s look at each example to determine if they have kinetic energy.
First off, a car in the garage: let’s ask ourselves- Is the car in motion?
No, it is sitting in the garage. It is not moving; therefore it doesn’t have any kinetic energy.
Next, a box sitting on a shelf: let’s ask ourselves the same question- Is the box in motion?
No, it is sitting on the shelf. Again, it is not moving. It doesn’t have any kinetic energy.
Our third item is a ball lodged in a tree: again, we will ask ourselves the same question- Is the object moving?
No, it isn’t moving. Again, since it is not moving, it will not have kinetic energy.
Our last item is a frisbee flying through the air: asking ourselves the same question- Is it moving?
Yes, the object is moving. Yes, it has kinetic energy.
The frisbee flying through the air has kinetic energy.
Answer:
A 1 liter volumetric flask should be used.
Explanation:
First we <u>convert 166.00 g of KI into moles</u>, using its <em>molar mass</em>:
Molar mass of KI = Molar mass of K + Molar mass of I = 166 g/mol
- 166.00 g ÷ 166 g/mol = 1 mol KI
Then we <u>calculate the required volume</u>, using the <em>definition of molarity</em>:
- Molarity = moles / liters
Liters = moles / molarity
Group names in the periodic table give clues about the metallic properties of the elements.
Metallic elements are found on the left side of the periodic table. A simple conception of metals describes them as a lattice of positive ions immersed in a sea of electrons.
First find the number of moles of sulfur using dimensional analysis with avogadro’s number as the conversion factor. 4.2*10^24 atoms * (1 mol/6.022*10^23 atoms) = 7.0 mol sulfur. The molar mass of sulfur is 32.06 g/mol, which is found on the periodic table as sulfur’s (S) atomic weight. Use dimensional analysis again with the molar mass of sulfur as the conversion factor. 7.0 mol * 32.06 g/mol = 224.42 g sulfur. Since the problems gives us two significant figures, round the mass of sulfur to 220 grams, or 2.2 * 10^2 g.