Answer:
Atom has the tendency to attain stable electronic configuration of the nearest noble gas in accordance with the duplet and octet rule.hence,when an atom gains electron it becomes negatively charged and that is its negative charge making it an anion
Answer:
Explanation:
The reason they are all related is because the ionic bond between them is very strong.
Answer:
There is 1.6 L of NO produced.
Explanation:
I assume you have an excess of NH3 so that O2 is the limiting reagent.
<u>Step 1:</u> Data given
2.0 liters of oxygen reacts with ammonia
<u>Step 2:</u> The balanced equation
4NH3 + 5O2 → 4NO + 6H2O
For 4 moles of NH3, we need 5 moles of O2 to produce 4 moles of NO and 6 moles of H2O
Consider all gases are kept under the same conditions for pressure and temperature, we can express this mole ratio in terms of the volumes occupied by each gas.
This means: when the reaction consumes 4 liters of ammonia (and 5 liters of oxygen) it produces 4 liters of nitrogen monoxide
Now, when there is 2.0 liters of oxygen consumed, there is 4/2.5 = 1.6 L of nitrogen monoxide produced.
There is 1.6 L of NO produced.
Answer: The rabbit population reached carrying capacity during the fourth year of the 10 years we set. Introduction: Population densityis the number of individuals in a population per unit of area. Some limiting factors only affect a population when its density reaches a certain level.
Explanation:
The rate constants, K, can be expressed in many different terms. In this case, Kp is the equilibrium constant expressed in terms of gas partial pressure. The formula for this is:
Kp = [P(product C) × P(product D)] / [P(reactant A) × P(reactant B)]
As there is only one product, we will use only its pressure in the numerator.
Kp = [P(COCl2)] / [P(CO) × P(Cl2)]
P(COCl2) = 1.49 × 10⁸ × 2.22 × 10⁻⁴ × 2.22 × 10⁻⁴
P(COCl2) = 7.34 atm