343 meters per second Is the answer
Hi there!
Initially, we have gravitational potential energy and kinetic energy. If we set the zero-line at H2 (12.0m), then the ball at the second building only has kinetic energy.
We also know there was work done on the ball by air resistance that decreased the ball's total energy.
Let's do a summation using the equations:

Our initial energy consists of both kinetic and potential energy (relative to the final height of the ball)

Our final energy, since we set the zero-line to be at H2, is just kinetic energy.

And:

The work done by air resistance is equal to the difference between the initial energy and the final energy of the soccer ball.
Therefore:

Solving for the work done by air resistance:


Answer:
when work is done on the system or heat comes into the system
B might be the correct answer
Answer:
P = VI = (IR)I = I2R
Explanation:
What the equation means is that if you double the current you end up with 4 times the power loss. It's like the area of carpet you need for a room - if you make the room twice as long and twice as wide you need 4x as much carpet. The physical explanation is that the voltage difference along a wire depends on the current - more current flowing with a resistance means more voltage (pressure of electricity if you like) is built up.
This extra voltage means more power. So if you double the current your would double the power, but you also double the voltage which doubles the power again = 4x as much power. P = VI = (IR)I = I2R
I hope this helps you out, if I'm wrong, just tell me.