Answer:
a. qm = 627.3 J
b. qw = 627.3 J
c. C₂ = 227.4 J/kg.°C
Explanation:
a.
Since, the calorimeter is completely insulated. Therefore,
Heat Lost by Metal = Heat Gained by water
qm = qw
qm = m₁C₁ΔT₁
where,
qm = heat lost by metal = ?
m₁ = mass of water = (density)(volume) = (1000 kg/m³)(100 mL)(10⁻⁶ m³/1 mL)
m₁ = 0.1 kg
C₁ = specific heat capacity of water = 4182 J/kg.°C
ΔT₁ = Change in Temperature of Water = 19.1°C - 17.6°C = 1.5°C
Therefore,
qm = (0.1 kg)(4182 J/kg.°C)(1.5°C)
<u>qm = 627.3 J</u>
<u></u>
b.
Since,
qm = qw
<u>qw = 627.3 J</u>
<u></u>
c.
qm = m₂C₂ΔT₂
where,
m₂ = mass of metal = 38.1 g = 0.0381 kg
C₂ = specific heat capacity of metal = ?
ΔT₂ = Change in Temperature of metal = 90°C - 17.6°C = 72.4°C
Therefore,
627.3 J = (0.0381 kg)(C₂)(72.4°C)
(627.3 J)/(0.0381 kg)(72.4°C) = C₂
<u>C₂ = 227.4 J/kg.°C</u>
Answer:
There are 80 protons and 80 electrons in Hg+ (Mercury)
Explanation:
Name Mercury
Symbol Hg
Atomic Number 80
Atomic Mass 200.59 atomic mass units
Number of Protons 80
Number of Neutrons 121
Number of Electrons 80
Melting Point -38.87° C
Boiling Point 356.58° C
Density 13.456 grams per cubic centimeter
Normal Phase Liquid
Family Transitions Metals
Period Number 6
Answer:
Mechanical energy
Kinetic energy
Explanation:
The mechanical energy is the sum of the kinetic and potential energy of the particles that make up the baseball.
Mechanical energy is made up of kinetic energy and potential energy. When the baseball is in motion, the particles make use of the kinetic energy, also known as motion energy and when the ball is not in motion the particles make use of the potential energy, also known as stored energy.
I think the answer is option 2
Answer:
The pressure of N₂ gas in cylinder B when compressed at constant temperature increases due to the increase in the frequency of collision between the gas molecules with themselves and with the wall of their container caused by a decrease in volume of the container.
Explanation:
Gas helps to explain the behavior of gases when one or more of either temperature, volume or pressure is varying while the other variables are kept constant.
In the gas cylinder B, the temperature of the given mass of gas is kept constant, however, the volume is decreased by pushing the movable piston farther into the cylinder. According to the gas law by Robert Boyle, the volume of a given mass of gas is inversely proportional to its pressure at constant temperature. This increase in pressure is due to the increase in the frequency of collision between the gas molecules with themselves and with the wall of their container caused by a decrease in volume of the container. As the cylinder becomes smaller, the gas molecules which were spread out further become more packed closely together, therefore, their frequency of collision increases building up pressure in the process.