Answer:
Option D describe the best this statement .
Explanation:
As velocity is the quantity which includes the rate of change as well as direction
Answer:
Explanation:
From the given information:
The equation for the reaction can be represented as:

The I.C.E table can be represented as:
2SO₂ O₂ 2SO₃
Initial: 14 2.6 0
Change: -2x -x +2x
Equilibrium: 14 - 2x 2.6 - x 2x
However, Since the amount of sulfur trioxide gas to be 1.6 mol.
SO₃ = 2x,
then x = 1.6/2
x = 0.8 mol
For 2SO₂; we have 14 - 2x
= 14 - 2(0.8)
= 14 - 1.6
= 12.4 mol
For O₂; we have 2.6 - x
= 2.6 - 1.6
= 1.0 mol
Thus;
[SO₂] = moles / volume = ( 12.4/50) = 0.248 M ,
[O₂] = 1/50 = 0.02 M ,
[SO₃] = 1.6/50 = 0.032 M
Kc = [SO₃]² / [SO₂]² [O₂]
= ( 0.032²) / ( 0.248² x 0.02)
= 0.8325
Recall that; the equilibrium constant for the reaction
= 0.8325;
If we want to find:

Then:


Since no temperature is given to use in the question, it will be impossible to find the final temperature of the mixture.
Answer:
Source, processing and distribution are the components of water system.
Explanation:
There are three parts of water system i. e. the source, the processing and distribution. Water is extracted from a source such as underground water, lake or river etc. After extraction this water is transported to the processing unit where it can be purified and after purification it is distributed to all places where it is needed. Potential energy is a form of energy that flows through this water system because the water is extracted from a depth and we know that depth and height refers to potential energy.
Answer: 28.4 g of aluminum oxide is produced by the reaction of 15.0 g of aluminum metal
Explanation:
To calculate the moles :
The balanced chemical equuation is:
According to stoichiometry :
4 moles of
produce == 2 moles of
Thus 0.556 moles of
will produce=
of
Mass of
Thus 28.4 g of aluminum oxide is produced by the reaction of 15.0 g of aluminum metal.