I believe C is correct,
Also, did you finish the equation for letter D?
The sketch of the parabola is attached below
We have the focus

The point

The directrix, c at

The steps to find the equation of the parabola are as follows
Step 1
Find the distance between the focus and the point P using Pythagoras. We have two coordinates;

and

.
We need the vertical and horizontal distances to find the hypotenuse (the diagram is shown in the second diagram).
The distance between the focus and point P is given by

Step 2
Find the distance between the point P to the directrix

. It is a vertical distance between y and c, expressed as

Step 3
The equation of parabola is then given as

=


⇒ substituting a, b and c


⇒Rearranging and making

the subject gives
For this case, the parent function is given by:

We apply the following function transformation:
Vertical compressions:
To graph y = a * f (x)
If 0 <a <1, the graph of y = f (x) is compressed vertically by a factor a. (Shrinks)
We have then:

Horizontal translations:
Suppose that h> 0
To graph y = f (x + h), move the graph of h units to the left.
We have then:

Vertical translations:
Suppose that k> 0
To graph y = f (x) + k, move the graph of k units up.
We have then:
Answer:
Vertical compression by factor of 1/2. Horizontal displacement 3 units to the left. Vertical displacement 2 units up.
It's an acute angle because it's smaller than 90 degrees and isn't a straight line.