Answer:
D
Explanation:
Scientists use significant figures to avoid claiming more accuracy in a calculation than they actually know.
Answer:
because it is from a mathematical combination of SI base units
Explanation:
Answer:
1. 1 s = 1 x 10⁶ μs
2. 1 g = 0.001 kg
3. 1 km = 1000 m
4. 1 mm = 1 x 10⁻³ m
5. 1 mL = 1 x 10⁻³ L
6. 1 g = 100 dg
7. 1 cm = 1 x 10⁻² m
8. 1 ms = 1 x 10⁻³ s
Explanation:
1.
1 x 10⁻⁶ s = 1 μs
(1 x 10⁻⁶ x 10⁶) s = 1 x 10⁶ μs
<u>1 s = 1 x 10⁶ μs</u>
2.
1000 g = 1 kg
1 g = 1/1000 kg
<u>1 g = 0.001 kg</u>
3.
<u>1 km = 1000 m</u>
<u></u>
4.
<u>1 mm = 1 x 10⁻³ m</u>
<u></u>
5.
<u>1 mL = 1 x 10⁻³ L</u>
<u></u>
6.
1 x 10⁻² g = 1 dg
(1 x 10⁻² x 10²) g = 1 x 10² dg
<u>1 g = 100 dg</u>
<u></u>
7.
<u>1 cm = 1 x 10⁻² m</u>
<u></u>
8.
<u>1 ms = 1 x 10⁻³ s</u>
Answer:
It’s called a conservative field.
Explanation:
I think it’s going to be the conservative field because in the question it talks about how it is able to become possible to define potential at a point in an electric field because electric field.
Answer:
a) 4.31 m/s²
b) 215.5 m
Explanation:
a) According to Newton's first law of motion
The net force applied to particular mass produced acceleration, a, according to
F = ma
F = 140 N
m = 32.5 kg
a = ?
140 = 32.5 × a
a = 140/32.5 = 4.31 m/s²
b) Using the equations of motion, we can obtain the distance travelled by the object in t = 10 s
u = initial velocity of the probe = 0 m/s (since it was initially at rest)
a = 4.31 m/s²
t = 10 s
s = distance travelled = ?
s = ut + at²/2
s = 0 + (4.31×10²)/2 = 215.5 m