To develop this problem it is necessary to apply the concepts related to Wavelength, The relationship between speed, voltage and linear density as well as frequency. By definition the speed as a function of the tension and the linear density is given by
![V = \sqrt{\frac{T}{\rho}}](https://tex.z-dn.net/?f=V%20%3D%20%5Csqrt%7B%5Cfrac%7BT%7D%7B%5Crho%7D%7D)
Where,
T = Tension
Linear density
Our data are given by
Tension , T = 70 N
Linear density , ![\rho = 0.7 kg/m](https://tex.z-dn.net/?f=%5Crho%20%3D%200.7%20kg%2Fm)
Amplitude , A = 7 cm = 0.07 m
Period , t = 0.35 s
Replacing our values,
![V = \sqrt{\frac{T}{\rho}}](https://tex.z-dn.net/?f=V%20%3D%20%5Csqrt%7B%5Cfrac%7BT%7D%7B%5Crho%7D%7D)
![V = \sqrt{\frac{70}{0.7}](https://tex.z-dn.net/?f=V%20%3D%20%5Csqrt%7B%5Cfrac%7B70%7D%7B0.7%7D)
![V = 10m/s](https://tex.z-dn.net/?f=V%20%3D%2010m%2Fs)
Speed can also be expressed as
![V = \lambda f](https://tex.z-dn.net/?f=V%20%3D%20%5Clambda%20f)
Re-arrange to find \lambda
![\lambda = \frac{V}{f}](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cfrac%7BV%7D%7Bf%7D)
Where,
f = Frequency,
Which is also described in function of the Period as,
![f = \frac{1}{T}](https://tex.z-dn.net/?f=f%20%3D%20%5Cfrac%7B1%7D%7BT%7D)
![f = \frac{1}{0.35}](https://tex.z-dn.net/?f=f%20%3D%20%5Cfrac%7B1%7D%7B0.35%7D)
![f = 2.86 Hz](https://tex.z-dn.net/?f=f%20%3D%202.86%20Hz)
Therefore replacing to find ![\lambda](https://tex.z-dn.net/?f=%5Clambda)
![\lambda = \frac{10}{2.86}](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cfrac%7B10%7D%7B2.86%7D)
![\lambda = 3.49m](https://tex.z-dn.net/?f=%5Clambda%20%3D%203.49m)
Therefore the wavelength of the waves created in the string is 3.49m