1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serhud [2]
3 years ago
9

Which of the following is an example of energy being transferred by sound waves?

Physics
2 answers:
worty [1.4K]3 years ago
8 0
First one i think nigs
Deffense [45]3 years ago
8 0

Answer:

all of them are right

Explanation:

You might be interested in
What form of energy is a bonfire and a bunsen burner?
xenn [34]

Answer:

heat and light energy

Explanation:

8 0
3 years ago
A topographic map would best provide information about which area? O state boundaries O interstate highways O routes of minor ro
VladimirAG [237]

Answer:

I believe it is D

Explanation:

7 0
3 years ago
Read 2 more answers
Copper and aluminum are being considered for a high-voltage transmission line that must carry a current of 60.7 A. The resistanc
lisov135 [29]

Answer:

a) The magnitude JJ of the current density for a copper cable is 5.91 × 10⁵A.m⁻²

b)The mass per unit length \lambdaλ for a copper cable is 0.757kg/m

c)The magnitude J of the current density for an aluminum cable is 3.5 × 10⁵A/m²

d)The mass per unit length \lambdaλ for an aluminum cable is 0.380kg/m

Explanation:

The expression for electric field of conductor is,

E =  \frac{V}{L}

The general equation of voltage is,

V = iR

The expression for current density in term of electric field is,

J = \frac{E}{p}

Substitute (V/L)  for E in the above equation of current density.

J = \frac{V}{pL} ------(1)

Substitute iR for V in equation (1)

J = \frac{iR}{pL} ------(2)

Substitute 1.69 × 10⁸ Ω .m for p

50A for i

0.200Ω.km⁻¹ for (R/L) in eqn (2)

J = \frac{(50) (0.200\times 10^-^3) }{1.69 \times 10^-^8 } \\\\= 5.91 \times 10^5A.m^-^2

The magnitude JJ of the current density for a copper cable is 5.91 × 10⁵A.m⁻²

b) The expression for resistivity of the conductor is,

p = \frac{RA}{L}

A = \frac{pL}{R}

The expression for mass density of copper is,

m = dV

where, V is the density of the copper.

Substitute AL for V in equation of the mass density of copper.

m=d(AL)

m/L = dA

λ is use for (m/L)

substitute,

pL/R for A  and λ is use for (m/L) in the eqn above

\lambda = d\frac{p}{\frac{R}{L} } ------(3)

Substitute 0.200Ω.km⁻¹ for (R/L)

8960kgm⁻³  for d and 1.69 × 10⁸ Ω .m

\lambda = (8960) \frac{(1.69 \times 10^-^8 }{0.200\times 10^-^3} \\\\= 0.757kg.m^-^1

c) Using the equation (2) current density for aluminum cable is,

J = \frac{iR}{pL}

p is the resistivity of the aluminum cable.

Substitute 2.82 × 10⁻⁸Ω.m for p ,

50A for i and 0.200Ω.km⁻¹ for (R/L)

J = \frac{(50)(0.200\times10^-^3) }{2.89\times 10^-^8} \\\\= 3.5 \times10^5A/m^2

The magnitude J of the current density for an aluminum cable is 3.5 × 10⁵A/m²

d) Using the equation (3) mass per unit length for aluminum cable is,

\lambda = d\frac{p}{\frac{R}{L} }

p is the resistivity and is the density of the aluminum cable.

Substitute 0.200Ω.km⁻¹ for (R/L), 2700 for d and 2.82 × 10⁻⁸Ω.m for p

\lambda = (2700) \frac{(2.82 \times 10^-^8) }{(0.200 \times 10^-^3) } \\\\= 0.380kg/m

The mass per unit length \lambdaλ for an aluminum cable is 0.380kg/m

7 0
3 years ago
Read 2 more answers
The force that probably propels the movement of the earth s gigantic rock plates is
il63 [147K]

The correct answer is:

c. convection.

The heating of magma and the continuous cycle of evolution of the magma creating a convection current is the reason for the evolution of Earths tectonic plates.

Explanation:

Tectonic plates are ready to move because the Earth's lithosphere has higher strength than the underlying asthenosphere. Lateral density changes in the mantle appear in convection. Plate movement is believed to be driven by a succession of the motion of the seafloor apart from the extended ridge (due to variations in topography and density of the crust.

4 0
3 years ago
What are 7 examples of potential energy
yaroslaw [1]

Answer:

<em>Hewo Otaku Kun Here! (UwU)</em>

Explanation:

1. A rock sitting at the edge of a cliff has potential energy. If the rock falls, the potential energy will be converted to kinetic energy.

2. Tree branches high up in a tree have potential energy because they can fall to the ground.

3. A stick of dynamite has chemical potential energy that would be released when the activation energy from the fuse comes into contact with the chemicals.

4. The food we eat has chemical potential energy because as our body digests it, it provides us with energy for basic metabolism.

5. A stretched spring in a pinball machine has elastic potential energy and can move the steel ball when released.

6. When a crane swings a wrecking ball up to a certain height, it gains more potential energy and has the ability to crash through buildings.

7. A set of double "A" batteries in a remote control car possess chemical potential energy which can supply electricity to run the car.

<em>happy to help!</em>

<em>from: Otaku Kun ^^</em>

8 0
3 years ago
Other questions:
  • You are 2m from one audio speaker and 2.1m from another audio speaker. Both generate the identical sine wave with a frequency of
    6·1 answer
  • What do you expect the enclosed current is for a bar magnet?
    6·1 answer
  • A space vehicle deploys its re–entry parachute when it's traveling at a vertical velocity of –150 meters/second (negative becaus
    8·1 answer
  • Help me with this PLEASEEEE!
    5·2 answers
  • Which of the following is not an example of units for expressing pressure?
    10·1 answer
  • What is the temperature outside of a tree?
    6·1 answer
  • An aluminum cup of mass 150 g contains 800 g of water in thermal equilibrium at 80.0°C. The combination of cup and water is cool
    8·1 answer
  • Aunt Mary needs to hang a picture in her bedroom. She uses a hammer to drive the nail into the wall. Find the force exerted by t
    11·1 answer
  • List the Layers of Earth in order from Thickest to thinnest using the Data table on the Earth’s interior: (Combine numbers for L
    9·2 answers
  • <img src="https://tex.z-dn.net/?f=%5Chuge%5Cmathfrak%7BQuestion%3A-%7D" id="TexFormula1" title="\huge\mathfrak{Question:-}" alt=
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!