The equation
(option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.
The horizontal momentum is given by:


Where:
- m₁: is the mass of the lab cart = 15 kg
- m₂: is the <em>mass </em>of the object dropped = 2 kg
: is the initial velocity of the<em> lab cart </em>
: is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
: is the final velocity of the<em> lab cart </em>
: is the <em>final velocity</em> of the <em>object </em>
Then, the horizontal momentum is:

When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:

Therefore, the equation
represents the horizontal momentum (option 3).
Learn more about linear momentum here:
I hope it helps you!
At the point of maximum displacement (a), the elastic potential energy of the spring is maximum:

while the kinetic energy is zero, because at the maximum displacement the mass is stationary, so its velocity is zero:

And the total energy of the system is

Viceversa, when the mass reaches the equilibrium position, the elastic potential energy is zero because the displacement x is zero:

while the mass is moving at speed v, and therefore the kinetic energy is

And the total energy is

For the law of conservation of energy, the total energy must be conserved, therefore

. So we can write

that we can solve to find an expression for v:
ANSWER

EXPLANATION
We want to convert 12000 inches to yards.
To do this, divide the value in inches by 36:

That is the answer.
The word "static" would be known to be friction as air rushing against an airplane
Answer:
hmmmmm ill get back later
Explanation: