Based on your problem where as ask for the distance of the ball drop between the pitchers mound and the home plate and with a given of the speed of ball is 43m/s and the homeplates is 60.6ft away. Based on my step by step procedure and also considering the value of gravity by 9.8m/s^2 i came up with the distance of 144m away
Answer:
B. He should change the lengths of the vectors that point tangent to the circle so that each is the same length.
Explanation:
A uniform circular motion is a motion in a circle where the tangential speed of the object is constant.
In the motion map:
- The arrows pointing towards the centre of the circle represent the centripetal acceleration, and their length represent the magnitude of the acceleration
- The arrows pointing tangential to the circle represent the tangential speed, and their length represent the magnitude of the speed
In this motion map, we see that the length of the vectors pointing tangent to the circle is not constant: this means that the speed is not constant. In order to have a uniform circular motion, the speed must be constant, therefore the lengths of the vectors that point tangent to the circle must be the same.
Answer:
<h2>0.67 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula
![a = \frac{f}{m} \\](https://tex.z-dn.net/?f=a%20%3D%20%20%5Cfrac%7Bf%7D%7Bm%7D%20%20%5C%5C%20)
f is the force
m is the mass
From the question we have
![a = \frac{38}{57} = \frac{2}{3} \\ = 0.666666...](https://tex.z-dn.net/?f=a%20%3D%20%20%5Cfrac%7B38%7D%7B57%7D%20%3D%20%20%5Cfrac%7B2%7D%7B3%7D%20%20%20%5C%5C%20%20%3D%200.666666...)
We have the final answer as
<h3>0.67 m/s²</h3>
Hope this helps you
Answer:
Explanation:
Give that,
Spring constant (k)=40N/m
Force applied =75N
Since the force is applied to the right, we don't know if it is compressing or stretching the spring
So let assume it compress
Using hooke's law
F=-ke
e=-F/k
Then, e=-75/40
e=-1.875m
The deformation is 1.875m.
Let assume it stretch
Using hooke's law
-F=-ke
e=F/k
Then, e=75/40
e=1.875m
The elongation is 1.875m
Answer:
Turn the heater on
Explanation:
There are two main forces involved in a balloon flight
The downward force is the total weight of the balloon: the air it contains, the gas bag, the basket, the passengers, etc.
The upward force is the weight of the of the air the balloon displaces.
During level flight
,
buoyant force = weight of displaced air - total weight of balloon
If you increase the temperature of the air in the bag, the air molecules spread out and leave through the bottom of the bag.
The balloon still has the same volume, so the weight of displaced outside air stays the same.
However, the balloon has lost some hot inside air, so its total weight decreases.
The upward force is greater than the downward force, so the balloon rises.