1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
postnew [5]
3 years ago
8

A stationary store has decided to accept a large shipment of ball-point pens if an inspection of 19 randomly selected pens yield

s no more than two defective pens. (a) Find the probability that this shipment is accepted if 5% of the total shipment is defective. (Use 3 decimal places.)
Mathematics
1 answer:
Romashka [77]3 years ago
8 0

Given Information:  

Probability of shipment accepted = p = 5%

Probability of shipment not accepted = q = 95%

Total number of pens = n = 19

Required Information:  

Probability of shipment being accepted with no more than 2 defective pens = P( x ≤ 2) = ?  

Answer:

P( x ≤ 2) = 0.933

Step-by-step explanation:

The given problem can be solved using Bernoulli distribution  which is given by

P(n, x) = nCx pˣqⁿ⁻ˣ  

The probability of no more than 2 defective pens means

P( x ≤ 2) = Probability of 0 defective pen + Probability of 1 defective pen + Probability of 2 defective pens

P( x ≤ 2) = P(0) + P(1) + P(2)

For P(0) we have p = 0.05, q = 0.95, n = 19 and x = 0

P(0) = 19C0(0.05)⁰(0.95)¹⁹

P(0) = (1)(1)(0.377)

P(0) = 0.377

For P(1) we have p = 0.05, q = 0.95, n = 19 and x = 1

P(1) = 19C1(0.05)¹(0.95)¹⁸

P(1) = (19)(0.05)(0.397)

P(1) = 0.377

For P(2) we have p = 0.05, q = 0.95, n = 19 and x = 2

P(2) = 19C2(0.05)²(0.95)¹⁷

P(2) = (171)(0.0025)(0.418)

P(2) = 0.179

Therefore, the required probability is

P( x ≤ 2) = P(0) + P(1) + P(2)

P( x ≤ 2) = 0.377 + 0.377 + 0.179

P( x ≤ 2) = 0.933

P( x ≤ 2) = 93.3%

Therefore, the probability that this shipment is accepted with no more than 2 defective pens is 0.933.

You might be interested in
the employees of a company were surveyed on questions regarding their educational background ( college degree) and marital statu
Llana [10]

Number employees N = 600

Then

Probability of Single + College degree = ?

Probability of single S = 100/600 = 1/6

Probability of College graduate G = 400/600 = 2/3

So then probability of both S and G is

Prob Single or Graduate = 1/6 + 2/3 = 1/6 + 4/6 = 5/6

. = 0.833

Then answer is

Probability of Single or Graduate = 5/6= 0.8333

Is also 83.33%

5 0
1 year ago
Lisa sold her old bike for $140 less than she paid for it. She sold the bike for $85. Write and solve and equation to find how m
rodikova [14]

Answer:

Equation=$140+$85=$225

Step-by-step explanation:

If she sold her bike for $140 less than she paid for it, and she sold it for $85, you add 140 to 85 to get out much she paid for. To check your answer do 225-140=85.

4 0
3 years ago
What is the answer to the file below
Firlakuza [10]
The picture is very blurry but the answer is 1 and 2
5 0
2 years ago
Yall know the rate of change?
ale4655 [162]

Answer:

M=-3

Step-by-step explanation:

Slope:

y2-y1/x2-x1

-3-3/1+1=6/-2=-3

4 0
2 years ago
SIMPLIFY the expression! Please!
Levart [38]

1+3^2 = 1+9 = 10

10/5 = 2

2-6+2 = -4+2

 answer is -2

5 0
3 years ago
Read 2 more answers
Other questions:
  • Whats the answer to this
    10·1 answer
  • Is the expression 3(x+1 1/2)-3equivalent to 3x+1 1/2
    9·1 answer
  • If B is the midpoint of AC, then the length of BC is:
    5·1 answer
  • In math is. about 20 miles per hour add or subtract
    7·2 answers
  • 1. (39 x 5)
    5·1 answer
  • How to do this??????????
    13·1 answer
  • A square has an area that is less than 100m2. What is reasonable range for the graph of the square sides
    5·1 answer
  • Hector purchased a used car and the graph below shows the number of miles on the car since he bought it. Which of these is a cor
    15·1 answer
  • Assume that the Poisson distribution applies and that the mean number of hurricanes in a certain area is 5.1 per year.
    7·1 answer
  • √(2x-5)=1+√(x-3)
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!