1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prohojiy [21]
1 year ago
6

51. A balloon starts rising from the ground, vertically upwards, uniformly at the rate of 1 m s-1. At the end of 4 seconds, a bo

dy is released from the balloon. Calculate the time taken by the released body to reach the ground. 51. A balloon starts rising from the ground , vertically upwards , uniformly at the rate of 1 m s - 1 . At the end of 4 seconds , a body is released from the balloon . Calculate the time taken by the released body to reach the ground​
Physics
1 answer:
strojnjashka [21]1 year ago
5 0

Answer:

4s

Explanation:

when a bOdy rises into the air,the time it takes to reach a particular height is the same as the time it will take the body to fall from that height to the ground.

You might be interested in
As your skateboard coasts uphill, your speed changes from 3 m/s to 1 m/s in
vlada-n [284]

Answer:

a=-0.33\ m/s^2

Explanation:

<u>Accelerated Motion</u>

The acceleration of a moving body is defined as the relation of change of speed (or velocity in vector form) with the time taken. The formula is given by

\displaystyle a=\frac{\Delta v}{t}

Or, equivalently

\displaystyle a=\frac{v_f-v_o}{t}

Where vf and vo are the final and initial speeds respectively. The problem gives us these values: v0 = 3 m/s, vf = 1 m/s, t = 3 seconds. Computing a

\displaystyle a=\frac{1-3}{3}=-0.33\ m/s^2

The negative sing of a indicates there is deceleration or decreasing speed

7 0
2 years ago
The line that is drawn perpendicular to the point at which a wave intersects a boundary is know as the
fomenos
<span>The line that is drawn perpendicular to the point at which a wave intersects a boundary is know as the Normal .

When the normal is drawn, the incident ray makes an angle with it known as the angle of incidence and the reflected ray makes an angle with it known as the angle of incidence. These angles are always equal.
 
The refracted ray makes an angle with the normal known as angle of refraction. The sin of angle of incidence to the sin of angle of refraction is called the refractive index( </span>μ= <span>sin i / sin r) .

hope all of it helps you!</span>
5 0
3 years ago
Two isolated, concentric, conducting spherical shells have radii R1 = 0.500 m and R2 = 1.00 m, uniform charges q1=+2.00 µC and q
scZoUnD [109]

Complete Question

The diagram for this question is shown on the first uploaded image  

Answer:

a E =1.685*10^3 N/C

b E =36.69*10^3 N/C

c E = 0 N/C

d V = 6.7*10^3 V

e   V = 26.79*10^3V

f   V = 34.67 *10^3 V

g   V= 44.95*10^3 V

h    V= 44.95*10^3 V

i    V= 44.95*10^3 V

Explanation:

From the question we are given that

       The first charge q_1 = 2.00 \mu C = 2.00*10^{-6} C

       The second charge q_2 =1.00 \muC = 1.00*10^{-6}

      The first radius R_1 = 0.500m

      The second radius R_2 = 1.00m

 Generally \ Electric \ field = \frac{1}{4\pi\epsilon_0}\frac{q_1+\ q_2}{r^2}

And Potential \ Difference = \frac{1}{4\pi \epsilon_0}   [\frac{q_1 }{r}+\frac{q_2}{R_2} ]

The objective is to obtain the the magnitude of electric for different cases

And the potential difference for other cases

Considering a

                      r  = 4.00 m

           E = \frac{((2+1)*10^{-6})*8.99*10^9}{16}

                = 1.685*10^3 N/C

Considering b

           r = 0.700 m \ , R_2 > r > R_1

This implies that the electric field would be

            E = \frac{1}{4\pi \epsilon_0}\frac{q_1}{r^2}

             This because it the electric filed of the charge which is below it in distance that it would feel

            E = 8*99*10^9  \frac{2*10^{-6}}{0.4900}

               = 36.69*10^3 N/C

   Considering c

                      r  = 0.200 m

=>   r

 The electric field = 0

     This is because the both charge are above it in terms of distance so it wont feel the effect of their electric field

       Considering d

                  r  = 4.00 m

=> r > R_1 >r>R_2

Now the potential difference is

                  V =\frac{1}{4\pi \epsilon_0} \frac{q_1 + \ q_2}{r} = 8.99*10^9 * \frac{3*10^{-6}}{4} = 6.7*10^3 V

This so because the distance between the charge we are considering is further than the two charges given  

          Considering e

                       r = 1.00 m R_2 = r > R_1

                V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{1.00} \frac{1.00*10^{-6}}{1.00} ] = 26.79 *10^3 V

          Considering f

              r = 0.700 m \ , R_2 > r > R_1

                      V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.700} \frac{1.0*10^{-6}}{1.00} ] = 34.67 *10^3 V

          Considering g

             r =0.500\m , R_1 >r =R_1

   V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V

          Considering h

                r =0.200\m , R_1 >R_1>r

  V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{R_1} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V

           Considering i    

   r =0\ m \ , R_1 >R_1>r

  V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{R_1} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V

8 0
3 years ago
An electroscope is a simple device consisting of a metal ball that is attached by a conductor to two thin leaves of metal foil p
baherus [9]

Answer:

the electroscope separate  by the presence of charge carriers

Explanation:

Metal bodies are characterized by having free (mobile) electrons. In the electroscope the plates are in balance; when the external metal ball is touched, a charge is introduced into the device, when the body that touched the ball is separated, an excess charge remains. This charge, being a metal, is distributed over the entire surface, giving a uniform density and an electric force of repulsion is created between the two charged sheets, which tends to separate the sheets. This force is counteracted by the tension component as the sheets are separated at a given angle, the separation reaches the point where

                  Fe - Tx = 0

                  Fe = Tx

In summary, the electroscope separate its leaves by the presence of charge carriers

3 0
3 years ago
A 2 kg rubber ball is thrown at a wall horizontally at 3 m/s, and bounces back the way it came at an equal speed. A 2 kg clay ba
Lyrx [107]

Answer:

THE RUBBER BALL

Explanation:

From the question we are told that

      The mass of the rubber ball is m_r   =  2 \ kg

      The  initial  speed of the rubber ball is  u =  3 \ m/s

      The final speed at which it bounces bank v  - 3 \ m/s

      The mass of the clay ball  is  m_c =  2  \ kg

       The  initial  speed of the clay  ball is u = 3 \ m/s

       The final speed of the clay ball is  v = 0 \  m/s

Generally Impulse is mathematically represented as

       I  =  \Delta p

where \Delta  p is the change in the linear momentum so  

       I  =  m(v-u)

For the rubber  is  

        I_r  =  2(-3 -3)

       I_r  = -12\ kg \cdot  m/s

=>     |I_r|  = 12\ kg \cdot  m/s

For the clay ball

       I_c  =  2(0-3)

        I_c =  -6 \ kg\cdot \ m/s

=>    | I_c| =  6 \ kg\cdot \ m/s

So from the above calculation the ball with the a higher magnitude of impulse is the rubber ball

       

8 0
3 years ago
Other questions:
  • A nucleus in a transition from an excited state emits a gamma-ray photon with an energy of 2.5 MeV. (a)
    10·1 answer
  • Which of the following are characteristics of heterogeneous mixtures?
    15·1 answer
  • A scientific theory provides an explanation of observed
    5·1 answer
  • Heated lithium atoms emit photons of light with an energy of 2.961 × 10−19 J. Calculate the frequency and wavelength of one of t
    11·1 answer
  • What does K stand for in Hookes law?
    12·2 answers
  • Easy question just get mixed up please help.
    9·1 answer
  • Does Archimedes principle hold good in a vessel in free fall​
    6·1 answer
  • what factors go into decisions about changing what materials should be used when building a products​
    7·1 answer
  • A turtle accelerates from a stop at 3m/s/s to the South for 8s. What is the turtle’s final velocity? Show your work and include
    15·1 answer
  • A traffic-safety engineer is designing a deceleration lane. She is basing the length of
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!