Answer:
The answer for the above statement is:
C. High-visibility clothing is important to wear in areas with moving vehicles.
because in bright clothes you are easier to see, so people driving can see you.
Explanation:
The magnitude of their resultant vector is 4.6 meters/seconds
Since we are to add the velocity vectors in order to find the magnitude of their resultant vector.
Hence:
Resultant vector magnitude=5.8 meters/seconds + (1.2 meters/seconds)
Resultant vector magnitude=5.8 meters/seconds-1.2 meters/seconds
Resultant vector magnitude 4.6 meters/seconds
Inconclusion The magnitude of their resultant vector is 4.6 meters/seconds
Learn more here:
brainly.com/question/11134601
Answer: 0.333 h
Explanation:
This problem can be solved using the <u>Radioactive Half Life Formula</u>:
(1)
Where:
is the final amount of the material
is the initial amount of the material
is the time elapsed
is the half life of the material (the quantity we are asked to find)
Knowing this, let's substitute the values and find
from (1):
(2)
(3)
Applying natural logarithm in both sides:
(4)
(5)
Clearing
:
(6)
Finally:
This is the half-life of the Bismuth-218 isotope
Answer:
(a) v = 5.42m/s
(b) vo = 4.64m/s
(c) a = 2874.28m/s^2
(d) Δy = 5.11*10^-3m
Explanation:
(a) The velocity of the ball before it hits the floor is given by:
(1)
g: gravitational acceleration = 9.8m/s^2
h: height where the ball falls down = 1.50m

The speed of the ball is 5.42m/s
(b) To calculate the velocity of the ball, after it leaves the floor, you use the information of the maximum height reached by the ball after it leaves the floor.
You use the following formula:
(2)
vo: velocity of the ball where it starts its motion upward
You solve for vo and replace the values of the parameters:

The velocity of the ball is 4.64m/s
(c) The acceleration is given by:


The acceleration of the ball is 2874.28/s^2
(d) The compression of the ball is:

THe compression of the ball when it strikes the floor is 5.11*10^-3m
The force exerted by a magnetic field on a wire carrying current is:

where I is the current, L the length of the wire, B the magnetic field intensity, and

the angle between the wire and the direction of B.
In our problem, the force is F=0.20 N. The current is I=1.40 A, while the length of the wire is L=35.0 cm=0.35 m. The angle between the wire and the magnetic field is

, so we can re-arrange the formula and substitute the numbers to find B: