#82
here we know that
acceleration = 2 m/s/s
time = 5 s
initial speed = 4 m/s
now we can use kinematics to find the final speed
So correct answer will be option D)
#83
here we know that
acceleration = 3 m/s/s
time = 4 s
initial speed = 5 m/s
now we can use kinematics to find the final speed
So correct answer will be option C)
#84
here we know that
acceleration = 7 m/s/s
time = 3 s
initial speed = 8 m/s
now we can use kinematics to find the final speed
So correct answer will be option C)
Answer:
incorrect its 987 for exact
You can use the impulse momentum theorem and just subtract the two momenta.
P1 - P2 = (16-1.2)(11.5e4)=1702000Ns
If you first worked out the force and integrated it over time the result is the same
The vertical component of force exerted by the hi.nge on the beam will be,142.10N.
To find the answer, we need to know more about the tension.
<h3>
How to find the vertical component of the force exerted by the hi.nge on the beam?</h3>
- Let's draw the free body diagram of the system.
- To find the vertical component of the force exerted by the hi.nge on the beam, we have to balance the total vertical force to zero.
- To find the answer, we have to find the tension,
- Thus, the vertical component of the force exerted by the hi.nge on the beam will be,
Thus, we can conclude that, the vertical component of force exerted by the hi.nge on the beam will be,142.10N.
Learn more about the tension here:
brainly.com/question/28106868
#SPJ1