Answer: a) 0.78 m/s b) 1.57 m/s
Explanation:
M = father's mass
m = son's mass = M/3
V = father's initial speed
v = son's initial speed
(1/2)MV^2 = (1/2)*(1/2)*m v^2
M*V^2 = (1/2)(M/3)v^2
V^2/v^2 = 1/4
V = v/2
Second equation:
(1/2)M*(V + 1.4)^2 = (1/2)m*v^2
= (1/2)*(M/3)*(3V)^2
cancel out the M's and (1/2)'s
(V + 1.4)^2 = 3V^2
V^2 + 2.8V + 1.96 = 3V^2
V^2 -1.4V -0.98 = 0
V^2 = 0.98/0.4 = 2.45
V = 1.57
Answer:
Part a)
distance = 112 miles
Part b)
current position = 112 miles from the position of town
Explanation:
Part a)
Since the distance marker is showing the distance between the town and the position of john at all time
so here we have

Part b)
Current position of John is given as

from the position of the town
Answer:
Pls give the equation and for what is that equation for?
Answer:
(d) not enough info
Explanation:
because it doesn't specify where the strings are attached
if it was the two ends of the rod then T1 would be equal to T2
<span>A van is traveling on a road at a speed of 55 km/h relative to a
stationary observer on the side of the road. A girl sitting near the
driver of the van throws a paper airplane to a boy at the back of the
van with a speed of 2 km/h relative to the girl, the boy, and the van.
The speed of the paper airplane, relative to the same stationary observer
on the side of the road, is (55 - 2) = 53 km/h. No rounding is necessary.</span>