Answer:
5.1 meters
Explanation:
Terra tosses a 0.20kg volleyball up at at a speed of 10 m/s
The height can be calculated as follows
= v^2/2g
= 10^2/2×9.8
= 100/19.6
= 5.1 meters
Hence the height is 5.1 meters
Weight is the measurement of the pull of gravity on an object, while mass is the measurement of the amount of matter that an object contains.
Answer:
T² ∝ R³
Explanation:
Given data,
The period of revolution of the planet around the sun, T
The mean distance of the planet from the sun, R
According to the III law of Kepler, " Law of Periods' states that the square of the orbital period to go around the sun once is directly proportional to the cube of the mean distance between the sun and the planet.
T² ∝ R³

From the above equation it is clear that T² varies directly as the R³.
Answer:
0.6 Ω
Explanation:
As shown in the diagram below,
Since the resistance and the ammeter are connected in series,
(i) The same amount of current flows through them.
(ii) The sum of their individual individual voltage is equal to the total voltage of the circuit.
Applying ohm's law,
V = IR................ Equation 1
Where V = Voltage across the ammeter, I = current flowing through the ammeter, R = resistance of the ammeter.
make R the subject of the equation
R = V/I............... Equation 2
Given: V = 1.2-0.9 = 0.3 V, I = 0.5 A.
Substitute into equation 2
R = 0.3/0.5
R = 0.6 Ω
Answer:
A) a = 73.304 rad/s²
B) Δθ = 3665.2 rad
Explanation:
A) From Newton's first equation of motion, we can say that;
a = (ω - ω_o)/t. We are given that the centrifuge spins at a maximum rate of 7000rpm.
Let's convert to rad/s = 7000 × 2π/60 = 733.04 rad/s
Thus change in angular velocity = (ω - ω_o) = 733.04 - 0 = 733.04 rad/s
We are given; t = 10 s
Thus;
a = 733.04/10
a = 73.304 rad/s²
B) From Newton's third equation of motion, we can say that;
ω² = ω_o² + 2aΔθ
Where Δθ is angular displacement
Making Δθ the subject;
Δθ = (ω² - ω_o²)/2a
At this point, ω = 0 rad/s while ω_o = 733.04 rad/s
Thus;
Δθ = (0² - 733.04²)/(2 × 73.304)
Δθ = -537347.6416/146.608
Δθ = - 3665.2 rad
We will take the absolute value.
Thus, Δθ = 3665.2 rad