Answer:
293k
Explanation:
In this question, we are asked to calculate the temperature to which the reaction must be heated to double the equilibrium constant.
To find this value, we will need to use the Van’t Hoff equation.
Please check attachment for complete solution
The tangent looks good.
The curve is a bit crooked, at the 0.9 and 1.
But overall, cool graph.
The answer is False give thanks for the answer m8 and happy Halloween
Answer:
2.12/R mW
Explanation:
The electrical power, P generated by the rod is
P = B²L²v²/R where B = magnetic field = 0.575 T, L = length of metal rod = separation of metal rails = 20 cm = 0.2 m, v = velocity of metal rod = 40 cm/s = 0.4 m/s and R = resistance of rod = ?
So, the induced emf on the conductor is
E = BLv
= 0.575 T × 0.2 m × 0.4 m/s
= 0.046 V
= 46 mV
The electrical power, P generated by the rod is
P = B²L²v²/R
= B²L²v²/R
So, P = (0.575 T)² × (0.2 m)² × (0.4 m/s)²
= 0.002116/R W
= 2.12/R mW