The first scientist to introduce the concept of inertia was Galileo
Answer:
E = k Q / [d(d+L)]
Explanation:
As the charge distribution is continuous we must use integrals to solve the problem, using the equation of the elective field
E = k ∫ dq/ r² r^
"k" is the Coulomb constant 8.9875 10 9 N / m2 C2, "r" is the distance from the load to the calculation point, "dq" is the charge element and "r^" is a unit ventor from the load element to the point.
Suppose the rod is along the x-axis, let's look for the charge density per unit length, which is constant
λ = Q / L
If we derive from the length we have
λ = dq/dx ⇒ dq = L dx
We have the variation of the cgarge per unit length, now let's calculate the magnitude of the electric field produced by this small segment of charge
dE = k dq / x²2
dE = k λ dx / x²
Let us write the integral limits, the lower is the distance from the point to the nearest end of the rod "d" and the upper is this value plus the length of the rod "del" since with these limits we have all the chosen charge consider
E = k 
We take out the constant magnitudes and perform the integral
E = k λ (-1/x)
Evaluating
E = k λ [ 1/d - 1/ (d+L)]
Using λ = Q/L
E = k Q/L [ 1/d - 1/ (d+L)]
let's use a bit of arithmetic to simplify the expression
[ 1/d - 1/ (d+L)] = L /[d(d+L)]
The final result is
E = k Q / [d(d+L)]
I think the answer will be A
The answer is B because if you use process of elimination, you find that A is invalid because Venus is the second planet. C is out because Mars is the 4th planet. D is out because we are nowhere near the Andromeda Galaxy. We are millions of light years away.
A pulley is another sort of basic machine in the lever family. We may have utilized a pulley to lift things, for example, a banner on a flagpole.
<u>Explanation:</u>
The point in a fixed pulley resembles the support of a lever. The remainder of the pulley behaves like the fixed arm of a first-class lever, since it rotates around a point. The distance from the fulcrum is the equivalent on the two sides of a fixed pulley. A fixed pulley has a mechanical advantage of one. Hence, a fixed pulley doesn't increase the force.
It essentially alters the direction of the force. A moveable pulley or a mix of pulleys can deliver a mechanical advantage of more than one. Moveable pulleys are appended to the item being moved. Fixed and moveable pulleys can be consolidated into a solitary unit to create a greater mechanical advantage.