Concept: According to Ohm's Law, the flow of electric current through a conductor is directly proportional to the potential difference across it, provided physical conditions (like temperature, pressure, volume etc.) remains same.
v = ir
or, r = v / i
Here, current (i) is measured by Ammeter which should be connected in series of any electrical circuit.
voltage (v) is measured by Voltmeter which should be connected parallel to the external resistance (r).
In the given experiment, the first arrangement of the circuit will show the smallest error because the voltmeter is connected exactly parallel to the external resistance.
In the second arrangement, the voltmeter is connected across external resistance (r) and Ammeter (A) and in this case, the voltmeter will not measure the exact potential drop across the external resistance (r). So, there would be more error.
The answer would be that they are close to water hope this helps!
The question is oversimplified, and pretty sloppy.
Relative to the Earth . . .
The Moon is in an elliptical orbit around us, with a period of
27.32... days, and with the Earth at one focus of the ellipse.
Relative to the Sun . . .
The Moon is in an elliptical orbit around the Sun, with a period
of 365.24... days, and with the Sun at one focus of the ellipse,
and the Moon itself makes little dimples or squiggles in its orbit
on account of the gravitational influence of the nearby Earth.
I'm sorry if that seems complicated. You know that motion is
always relative to something, and the solar system is not simple.
Answer:
Velocity from second channel will be 1.6875 m/sec
Explanation:
We have given width of the channel , that is diameter of the channel 1
= 12 m
So radius 
Speed through the channel 1 
Width , that is diameter of the channel 2 
So 
From continuity equation



So velocity from smaller channel will be 1.6875 m /sec