1. lifts it chest high
The force opposing to this action is the force due to
gravity. Therefore the work done is:
W1 = m g d
where m is mass of the barbell, g is gravity and d is displacement
2. holds it for 30 seconds
Work is a product of force and displacement, since there
is no displacement, therefore work done is zero.
W2 = 0
3. puts it down slowly
If the barbell was dropped, then it would simply be a free
fall. But since it was not, so the work done here is also equal to the weight
of the barbell times displacement:
W3 = m g d
We can see that W1 = W3, and since W2 = 0, therefore the answer
is:
<span>w3 = w1 > w2</span>
Answer:
<em>Speed of the electron is 2.46 x 10^8 m/s</em>
<em></em>
Explanation:
momentum of the electron before relativistic effect = 
where
is the rest mass of the electron
V is the velocity of the electron.
under relativistic effect, the mass increases.
under relativistic effect, the new mass M will be
M = 
where

c is the speed of light = 3 x 10^8 m/s
V is the speed with which the electron travels.
The new momentum will therefore be
==> 
It is stated that the relativistic momentum is 1.75 times the non-relativistic momentum. Equating, we have
1.75
= 
the equation reduces to
1.75 = 
square both sides of the equation, we have
3.0625 = 1/
3.0625 - 3.0625
= 1
2.0625 = 3.0625
= 0.67
β = 0.819
substitute for 
V/c = 0.819
V = c x 0.819
V = 3 x 10^8 x 0.819 = <em>2.46 x 10^8 m/s</em>
Answer:
The person with locked legs will experience greater impact force.
Explanation:
Let the two persons be of nearly equal mass (say m)
The final velocity of an object (person) dropped from a height H (here 2 meters) is given by,
(
= acceleration due to gravity)
which can be derived from Newton's equation of motion,

Now, the time taken (say
) for the momentum (
) to change to zero will be more in the case of the person who bends his legs on impact than who keeps his legs locked.
We know that,

Naturally, the person who bends his legs will experience lesser force since
is larger.
Answer:
C
Explanation:
According to Newton's first law of motion, which states that a body will continue in its state of rest or uniform motion unless acted upon by an external force to change its state of rest or uniform motion. So, the Voyagers spacecraft will continue to move in the same way at the constant speed of 50,000 mph unless acted upon by a force.
Sound travels at approximately 1,100 feet per second (766 miles per hour). Radio waves travel at the speed of light, which is approximately 186,000 miles per second. This means that in the time radio waves travel the length of a football field, light can travel further than all the way around the world.