By using an electric field, it is feasible to differentiate between these different forms of radiation.
<h3>What is a radioactive source?</h3>
A source that emits radiation like gamma, beta, and alpha rays is said to be radioactive. Using an electric field, we can discriminate between these different forms of radiation.
The field does not deflate the gamma rays, but it does deflate the alpha and beta rays, with the alpha being deflated to the field's negative portion and the beta to its positive part.
Hence, by using an electric field, it is feasible to differentiate between these different forms of radiation.
To learn more about the radioactive source refer;
brainly.com/question/12741761
#SPJ1
Answer:
I found this don't know if its any use or not
Answer:
1 millions times stronger
The basic principles that apply to circuits is that electrons must receive energy from a source, and electrons transfer energy to perform some useful function.
<h3 /><h3>What is circuit?</h3>
Individual electronic components, like resistors, transistors, are connected by metallic wires or traces by which the electric current can flow to form a circuit design.
The basic principles that apply to circuits will be;
1. Electrons must receive energy from a source.
2. Electrons transfer energy to perform some useful function.
Hence, option 1 and 2 are correct.
To learn more about the circuit, refer to the link;
brainly.com/question/21505732
#SPJ1
Answer:
155.38424 K
2.2721 kg/m³
Explanation:
= Pressure at reservoir = 10 atm
= Temperature at reservoir = 300 K
= Pressure at exit = 1 atm
= Temperature at exit
= Mass-specific gas constant = 287 J/kgK
= Specific heat ratio = 1.4 for air
For isentropic flow

The temperature of the flow at the exit is 155.38424 K
From the ideal equation density is given by

The density of the flow at the exit is 2.2721 kg/m³