Answer:
Therefore, the conclusion is valid.
The required diagram is shown below:
Step-by-step explanation:
Consider the provided statement.
Premises: All good students are good readers. Some math students are good students.
Conclusion: Some math students are good readers.
It is given that All good students are good readers, that means all good students are the subset of good readers.
Now, it is given that some math students are good students, that means there exist some math student who are good students as well as good reader.
Therefore, the conclusion is valid.
The required diagram is shown below:
If each linear dimension is scaled by a factor of 10, then the area is scaled by a factor of 100. This is because 10^2 = 10*10 = 100. Consider a 3x3 square with area of 9. If we scaled the square by a linear factor of 10 then it's now a 30x30 square with area 900. The ratio of those two areas is 900/9 = 100. This example shows how the area is 100 times larger.
Going back to the problem at hand, we have the initial surface area of 16 square inches. The box is scaled up so that each dimension is 10 times larger, so the new surface area is 100 times what it used to be
New surface area = 100*(old surface area)
new surface area = 100*16
new surface area = 1600
Final Answer: 1600 square inches
Answer:
Input
Independent variable
Step-by-step explanation:
we know that
<u>Independent variables</u>, are the values that can be changed or controlled in a given model or equation
<u>Dependent variables</u>, are the values that result from the independent variables
we have the function

In this problem
This is a proportional relationship between the variables d and t
The function d(t) represent the dependent variable or the output
The variable t represent the independent variable or input
Answer:
78.81%
Step-by-step explanation:
We are given;
Population mean; μ = 149
Sample mean; x¯ = 147.8
Sample size; n = 88
standard deviation; σ = 14
Z-score is;
z = (x¯ - μ)/(σ/√n)
Plugging in the relevant values;
z = (147.8 - 149)/(14/√88)
z = -0.804
From z-distribution table attached, we have; p = 0.21186
P(X > 147.8) = 1 - 0.21186 = 0.78814
In percentage gives; p = 78.81%