The answer is 4.0 kg since the flywheel comes to rest the
kinetic energy of the wheel in motion is spent doing the work. Using the
formula KE = (1/2) I w².
Given the following:
I = the moment of inertia about the
axis passing through the center of the wheel; w = angular velocity ; for the
solid disk as I = mr² / 2 so KE = (1/4) mr²w². Now initially, the wheel is spinning
at 500 rpm so w = 500 * (2*pi / 60) rad / sec = 52.36 rad / sec.
The radius = 1.2 m and KE = 3900 J
3900 J = (1/4) m (1.2)² (52.36)²
m = 3900 J / (0.25) (1.2)² (52.36)²
m = 3.95151 ≈ 4.00 kg
Answer:
8.61 min
Explanation:
original mass= 12.65
first half life = 12.65/2 = 6.325
second half life = 6.325/2 = 3.1625
Note : 3.1625 is the closest to the value (3.115) given so we work with it
total time for decay =17.22
therefore two decays = 17.22/2= 8.61
The friction between the two objects creates heat.
Rank of the radiation particles according to their ability to penetrate solid objects, from the best able to penetrate to the least able to penetrate:
C ) gamma particle, beta particle, alpha particle.
Answer:

Explanation:
<u>Sum of Vectors in the Plane</u>
Given two vectors

They can be expressed in their rectangular components as


The sum of both vectors can be done by adding individually its components

If the vectors are given as a magnitude and an angle
, each component can be found as


The first vector has a magnitude of 3.14 m and an angle of 30°, so


The second vector has a magnitude of 2.71 m and an angle of -60°, so


The sum of the vectors is


Finally, we compute the magnitude of the sum


