Answer:
g_x = 3.0 m / s^2
Explanation:
Given:
- Change in length of spring [email protected] = 22.6 cm
- Time taken for 11 oscillations t = 19.0 s
Find:
- The value of gravitational free fall g_x at plant X:
Solution:
- We will assume a simple harmonic motion of the mass for which Time is:
T = 2*pi*sqrt(k / m ) ...... 1
- Sum of forces in vertical direction @equilibrium is zero:
F_net = k*x - m*g_x = 0
(k / m) = (g_x / x) .... 2
- substitute Eq 2 into Eq 1:
2*pi / T = sqrt ( g_x / x )
g_x = (2*pi / T )^2 * x
- Evaluate g_x:
g_x = (2*pi / (19 / 11) )^2 * 0.226
g_x = 3.0 m / s^2
Answer:
t = 1.75
t = 0.04
Explanation:
a)
For part 1 we want to use a kenamatic equation with constant acceleration:
X = 1/2*a*t^2
isolate time
t = sqrt(2X / a)
Plugin known variables. Acceleration is the force of gravity which is 9.8 m/s^2
t = sqrt(2*15m / 9.8m/s^2)
t = 1.75 s
b)
The speed of sound travels at a constant speed therefore we don't need acceleration and can use the equation:
v = d / t
isolate time
t = d / v
plug in known variables
t = 15m / 340m/s
t = 0.04 s
Answer:
a = 0.8 m/s^2
Explanation:
Force equation: F = ma
F = ma -> a = F/m = 2.8*10^3 N / 3.5*10^3 kg = 0.8 m/s^2



_________________________________
If west means the west of the axis x the velocity equal :

Answer:
Heat is very important in our daily life in warming the house, cooking, heating the water, and drying the washed clothes. The heat has many usages in the industry as making and processing the food and manufacture of the glass, the paper, the textile, and etc.
Explanation: