32.8 g of Butane is required and 99.3 g of CO₂ is produced
<u>Explanation:</u>
The above mentioned reaction can be written as,
C₄H₁₀(g) + 13 O₂(g) → 4CO₂(g) + 5 H₂O(g) where ΔH (rxn)= -2658 kJ
It is given that 1.5 × 10³ kJ of energy is produced, the original reaction says that 2658 kJ of heat is produced, which means that less than one mole of butane is used in the reaction.
That is
of butane reacted
Now this moles is converted into mass by multiplying it with its molar mass = 0.564 mol × 58.122 g / mol
= 32.8 g of butane.
Mass of CO₂ produced = 0.564 ×44.01 g /mol × 4 mol
= 99.3 g of CO₂
Thus 32.8 g of Butane is required and 99.3 g of CO₂ is produced
Answer:
All cells have these four parts in common: a plasma membrane, cytoplasm, ribosomes, and DNA
Explanation:
can i get brainliest plz
Answer:
No reaction is observed
Explanation:
The benzene ring is aromatic. Being an aromatic ring, the benzene ring is remarkably stable to all reactions that destroy the aromatic ring.
Alkenes are oxidized to alkanols in the presence of KMnO4 but this reaction does not occur with benzene. However, substituted benzenes having hydrogen atoms attached to the substituent carbon atom can be oxidized to the corresponding carboxylic acid.
Answer:
An ion channel, more specifically a calcium channel.
Explanation:
The electrical activity of the cells is regulated by ion channels. Calcium channels, also referred as the voltage-gated calcium channels constitute one group of a superfamily of ion channels. A change in voltage across the membrane or small molecules triggers calcium channels to open, allowing calcium to flow into the cell. Inside the cell, calcium acts as a second messenger, it binds to calcium sensitive proteins to induce different responses and support several functions such as muscle contraction, hormone and neurotransmitter secretion, gene regulation, activation of other ion channels, control of action potentials, cell survival, etc.