Answer:
3
Explanation:
Use the rise over run method. plot the necessary points first in the x and y axis
Answer:
Pure solids or liquids are excluded from the equilibrium expression because their effective concentrations stay constant throughout the reaction. The concentration of a pure liquid or solid equals its density divided by its molar mass.
Explanation:
Hope this helps!!!
Answer: The approximate molecular mass of the polypeptide is 856 g/mol
Explanation:
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:
Or,
where,
= osmotic pressure of the solution = 4.19 torr
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (polypeptide) = 0.327 g
Volume of solution = 1.70 L
R = Gas constant =
T = temperature of the solution =
Putting values in above equation, we get:
Hence, the molar mass of the polypeptide is 856 g/mol
<span>Velocity describes the speed of an object and its direction of motion</span>
Answer:
0.231 mol/L
Explanation:
The first step is to write the balanced equation for this reaction:

The second step is to find the number of moles in the acid:
number of moles = volume * concentration
= 0.035 L * 0.275 mol/L
= 0.009625 mol
The third step is to use the molar ratio from the balanced chemical equation to find the number of moles of NaOH that can neutralize 0.009625 mol of sulphuric acid.
n(sulphuric acid) : n(sodium hydroxide)
1 : 2
0.009625 mol : x
x = 0.01925 mol
Fourth step is to calculate the concentration of sodium hydroxide:
