Answer:
5.64×10²³ atoms C
Explanation:
Convert moles of H to moles of C:
2.81 mol H × (2 mol C / 6 mol H) = 0.937 mol C
Convert moles of C to atoms of C:
0.937 mol C × (6.02×10²³ atoms C / mol C) = 5.64×10²³ atoms C
Answer:
0.0084
Explanation:
The mole fraction of BaCl₂ (X) is calculated as follows:
X = moles BaCl₂/total moles of solution
Given:
moles of BaCl₂ = 0.400 moles
mass of water = 850.0 g
We have to convert the mass of water to moles, by using the molecular weight of water (Mw):
Mw of water (H₂O) = (2 x 1 g/mol)+ 16 g/mol = 18 g/mol
moles of water = mass of water/Mw of water = 850.0 g/(18 g/mol) = 47.2 mol
The total moles of the solution is given by the addition of the moles of solute (BaCl₂) and the moles of solvent (water):
total moles of solution = moles of BaCl₂ + moles of water = 0.400 + 47.2 mol = 47.6 mol
Finally, we calculate the mole fraction:
X = 0.400 mol/47.6 mol = 0.0084
Answer:
the wavelength of radiation emitted is 
Explanation:
The energy of the Bohr's hydrogen atom can be expressed with the formula:

For n = 7:


For n = 4


The electron goes from the n = 7 to the n = 4, then :


Wavelength of the radiation emitted:

where;
hc = 1242 eV.nm


Answer:
See explanation
Explanation:
The valence electrons are electrons found on the valence (outermost) shell of an atom.
When an atoms form compounds, there is an exchange of valence electrons between the atoms of one element and the atoms of another element.
Let us consider a typical example, sodium has one valence electron and chlorine has seven valence electrons. This means that chlorine needs one electron to complete its octet while sodium needs to release one electron in order to attain the octet structure.
So, sodium gives out its one electron and becomes a stable sodium ion and chlorine accepts that electron and becomes a stable chloride ion. This is how the compound sodium chloride is formed.
Answer:
A pH=3 is 1000 times as acidic as a pH=6.