Answer:
Measuring distances to stars through stellar parallax. Measuring distances to stars through the moving cluster method. Astronomers measure the temperature of a star by looking at the star's color and its spectrum. The apparent brightness of a star tells how bright it seems to us
Explanation:
<u>Answer:</u> When the enthalpy of this overall chemical equation is calculated, the enthalpy of the second intermediate equation is halved and has its sign changed.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The overall chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)
(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times (\Delta H_1)]+[\frac{1}{2}\times (-\Delta H_2)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%28%5CDelta%20H_1%29%5D%2B%5B%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%28-%5CDelta%20H_2%29%5D)
Hence, when the enthalpy of this overall chemical equation is calculated, the enthalpy of the second intermediate equation is halved and has its sign changed.
Answer:
B
Explanation:
Bad conductor of elecricity
Answer:
see explanation
Explanation:
Write the balanced COMPLETE ionic equation for the reaction when Na₂CO₃ and AgNO₃ are mixed in aqueous solution. If no reaction occurs, simply write only NR.
Ag (+1) + NO3(-1) + 2 Na(+1) + Co3 (-2)--> Ag2CO3 (s) + 2 Na (+1) + 2NO3(-1)
The answer would be c as the cart is not in motion therefor ruling out kinetic and it is completely at rest making all of it energy potential