Answer:
John Dalton:
John Dalton was the scientist who introduced atomic theory in the field of chemistry. Dalton worked on different gases and formulated this theory. The main points of Dalton's theory are:
- Every element present is made up of atoms.
- Atoms of an elements are have the same same properties whereas these properties are different for each element.
- According to his theory, an atom could not be broken down.
- Different atoms combine or get separated from each other during a chemical reaction.
Ernest Rutherford:
Ernest Rutherford is known as the father of nuclear physics due to his impressing research work on radioactivity of atoms. Rutherford was the first scientist to discover the nucleus of an atom and prove that the nucleus was charged. He also described that the electrons circle around the nucleus of an atom.
I would say the first three. But I'm not 100% sure. I'm truly sorry if it's wrong
When the reactant is single compound before the reaction and become more than single compound after reaction is called decomposition reaction
Answer:
A. for K>>1 you can say that the reaction is nearly irreversible so the forward direction is favored. (Products formation)
B. When the temperature rises the equilibrium is going to change but to know how is going to change you have to take into account the kind of reaction. For endothermic reactions (the reverse reaction is favored) and for exothermic reactions (the forward reaction is favored)
Explanation:
A. The equilibrium constant K is defined as

In any case
aA +Bb equilibrium Cd +dD
where K is:
![K= \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}](https://tex.z-dn.net/?f=K%3D%20%5Cfrac%7B%5BC%5D%5E%7Bc%7D%5BD%5D%5E%7Bd%7D%7D%7B%5BA%5D%5E%7Ba%7D%5BB%5D%5E%7Bb%7D%7D)
[] is molar concentration.
If K>>> 1 it means that the molar concentration of products is a lot bigger that the molar concentration of reagents, so the forward reaction is favored.
B. The relation between K and temperature is given by the Van't Hoff equation

Where: H is reaction enthalpy, R is the gas constant and T temperature.
Clearing the equation for
we get:

Here we can study two cases: when delta
is positive (exothermic reactions) and when is negative (endothermic reactions)
For exothermic reactions when we increase the temperature the denominator in the equation would have a negative exponent so
is greater that
and the forward reaction is favored.
When we have an endothermic reaction we will have a positive exponent so
will be less than
the forward reactions is not favored.
