The change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
The given parameters;
- <em>Current flowing in the wire, I = 4.00 mA</em>
- <em>Initial diameter of the wire, d₁ = 4 mm = 0.004 m</em>
- <em>Final diameter of the wire, d₂ = 1 mm = 0.001 m</em>
- <em>Length of wire, L = 2.00 m</em>
- <em>Density of electron in the copper, n = 8.5 x 10²⁸ /m³</em>
<em />
The initial area of the copper wire;

The final area of the copper wire;

The initial drift velocity of the electrons is calculated as;

The final drift velocity of the electrons is calculated as;

The change in the mean drift velocity is calculated as;

The time of motion of electrons for the initial wire diameter is calculated as;

The time of motion of electrons for the final wire diameter is calculated as;

The average acceleration of the electrons is calculated as;

Thus, the change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
Learn more here: brainly.com/question/22406248
206Pb = 1.342 x10^22 atoms
<span>To find the number of atoms, you must first find the number of moles. If 238U is 238.029g/mol, and we have 1.75 grams, how many moles is that? 1.75 divided by 238.029 = 0.007352045 moles. To find the number of atoms in 0.007352045 moles, you multiply by a mole: </span>
<span>0.007352045 x 6.02 x 10^23 = 4.426 x10^21 atoms. </span>
<span>Same procedure for 206Pb: </span>
<span>4.59 divided by 205.97446 = 0.022284316 moles </span>
<span>0.022284316 x 6.02 x 10^23 = 1.342 x10^22 atoms. </span>
<span>Hope that helps you!
https://answers.yahoo.com/question/index?qid=20100331153014AAoMXcu
</span>
Answer:
a) K = 2/3 π G m ρ R₁³ / R₂
, b) U = - G m M / r
Explanation:
The law of universal gravitation is
F = G m M / r²
Part A
Let's use Newton's second law
F = m a
The acceleration is centripetal
a = v² / R₂
G m M / R₂² = m v² / R₂
v² = G M / R₂
They give us the density of the planet
ρ = M / V
V = 4/3 π R₁³
M = ρ V
M = ρ 4/3 π R₁³
v² = 4/3 π G ρ R₁³ / R₂
K = ½ m v²
K = ½ m (4/3 π G ρ R₁³ / R₂)
K = 2/3 π G m ρ R₁³ / R₂
Part B
Potential energy and strength are related
F = - dU / dr
∫ dU = - ∫ F. dr
The force was directed towards the center and the vector r outwards therefore there is an angle of 180º between the two cos 180 = -1
U- U₀ = G m M ∫ dr / r²
U - U₀ = G m M (- r⁻¹)
We evaluate for
U - U₀ = -G m M (1 /
- 1 /
)
They indicate that for ri = ∞ U₀ = 0
U = - G m M / r
Answer:
Explanation: Decreasing in velocity
Answer:
0.5A
Explanation:
Using
,
R is the resistance (in Ohms)
V is the voltage (in V)
I is the current (in A)

I = 0.5A