To know the answer, compare the oxidation number of the element in the reactant and the product side. The oxidation number of Al was originally +3, then became 0 after the reaction. On the other hand, Fe was originally 0, then became +2 after the reaction. When the element is oxidized, it oxidation number increases. <em>Thus, the element oxidized is Fe.</em>
The problem above can be solved using M1V1=M2V2 where M1 is the concentration of the concentrated, V1 is the volume of the concentrated solution, M2 is the concentration of the Dilute Solution, V2 is the Volume of the dilute solution. Hence,
(3.0 M)(V2)=(250 mL)(1.2M)
V2 (3.0)= 300
V2= 100 mL
Therefore, you need 100 mL of 3.0 M HCl to form a 250 mL of 1.2 M HCl.
Answer:
387 g/mol
Explanation:
The molar mass is a ratio comparing a substance's mass and molar value. The specific ratio looks like this:
Molar Mass (g/mol) = mass (g) / moles
You can plug the given values into the ratio to find the molar mass.
Molar Mass = mass / moles
Molar Mass = 0.406 g / 0.00105 mol
Molar Mass = 387 g/mol