Answer:
HCl is not a catalyst because these are not used up during the chemical reactions.
Explanation:
Hello there!
In this case, according to the performed experiments, it is possible for us to realize that HCl cannot be a catalyst for this reaction because it is used up during the reaction. This is explained by the fact that catalyst are able to return to the original form once the reaction has gone to completion; this is the example of palladium in the hydrogenation or dehydrogenation of hydrocarbons depending on the case. Moreover, we know that the catalysts increase the reaction rate because they decrease the activation energy of the reaction and therefore the student observed such increase.
Best regards!
Answer:
All strong acids have a higher value of
and the equilibrium for the reaction with water lies far to the right.
Explanation:
All strong acids dissociate completely in the solution. Higher the value of dissociation constant of the acid, higher will be the dissociation of the acid.
The reaction of the acid with water will be favored in the forward direction for acids having higher dissociation constant value (
).
The dissociation of a strong acid say HA in water is shown below
Higher the value of
, more will be the dissociation of the acid in water. The reaction will move far to the right side.
Carbon dioxide + water → glucose + oxygen + water
This set up of a conversion table should show you that if you multiply
the grams of BeI2 times .02 moles, it equals <span>5.256 g (your answer) </span>