Answer:
mass of HCl = 243.5426 grams
Explanation:
1- we will get the mass of the reacting gold:
volume of gold = length * width * height
volume of gold = 3.2 * 3.8 * 2.8 = 34.048 cm^3 = 34.048 ml<span>
density = mass / volume
Therefore:
mass = density * volume
mass of gold = </span>19.3 * 34.048 = 657.1264 grams
2- we will get the number of moles of the reacting gold:
number of moles = mass / molar mass
number of moles = 657.1264 / 196.96657
number of moles = 3.3362 moles
3- we will get the number of moles of the HCl:
First, we will balanced the given equation. The balanced equation will be as follows:
Au + 2HCl ......> AuCl2 + H2
This means that one mole of Au reacts with 2 moles of HCl.
Therefore 3.3362 moles will react with 2*3.3362 = 6.6724 moles of HCL
4- we will get the mass of the HCl:
From the periodic table:
molar mass of H = 1 gram
molar mass of Cl = 35.5 grams
Therefore:
molar mass of HCl = 1 + 35.5 = 36.5 grams/mole
number of moles = mass / molar mass
Therefore:
mass = number of moles * molar mass
mass of HCl = 6.6724 * 36.5
mass of HCl = 243.5426 grams
Hope this helps :)
Answer:
24.525 g of sulfuric acid.
Explanation:
Hello,
Normality (units of eq/L) is defined as:

Since the sulfuric acid is the solute, and we already have the volume of the solution (500 mL) but we need it in liters (0.5 L, just divide into 1000), the equivalent grams of solute are given by:

Now, since the sulfuric acid is diprotic (2 hydrogen atoms in its formula) 1 mole of sulfuric acid has 2 equivalent grams of sulfuric acid, so the mole-mass relationship is developed to find its required mass as follows:

Best regards.
Answer: No
Explanation: For it to be a divergent boundary, the arrows would have to be pointing in opposite directions. (one points left, one points right).