Answer:
Basee is the answer hope its write xd
Https://www.youtube.com/watch?v=J_MtVs0aBdU
Watch this and it will help you
the ideal gas equation is PV=nRT
where P=pressure
V=Volume
n=no. of moles
R=universal gas constant
T=temperature
The universal gas constant (R) is 0.0821 L*atm/mol*K
a pressure of 746 mmhg =0.98 atm= 1 atm (approx)
T=37 degrees Celsius =37+273=310 K (convert it to Kelvin by adding 273)
V=0.7 L (only getting oxygen, get 21% of 3.3L)
Solution:
(1 atm)(0.7 L)=n(0.0821 L*atm/mol*K)(310 K)
0.7 L*atm=n(25.451 L*atm/mol)
n=0.0275 mole
Answer:
n=0.0275 mole of oxygen in the lungs.
Answer:
igneous rocks are made from molten,and therefore rarely have fossils in them.Metamorphic rocks are squished,put under pressure,and get heated to the extreme,so it's very rare for fossils to survive in these conditions.
Answer:
O.1M
Explanation:
First let's generate a balanced equation for the reaction
NaOH + HCl —>NaCl + H2O
From the equation,
The ratio of the acid to base is 1:1.
From the question, we obtained the following:
Ma = Molarity of acid = 0.12M
Va = volume of acid = 21.35cm3
Vb = volume of base = 25.55cm3
Mb = Molarity of base =?
We obtained nA(mole of acid) and nB(mole of base) to be 1
The molarity of the base can be calculated for using:
MaVa/ MbVb = nA / nB
0.12x21.35 / Mb x 25.55 = 1
Cross multiply to express in linear form
Mb x 25.55 = 0.12x21.35
Divide both side by 25.55
Mb = (0.12x21.35) / 25.55
Mb = 0.1M
The molarity of the base is 0.1M