Answer:
From the periodic table:
mass of carbon = 12 grams
mass of hydrogen = 1 grams
mass of oxygen = 16 grams
molar mass of surcose = 12(12) + 22(1) + 11(16) = 342 grams
number of molecules = number of moles x Avogadro's number
number of moles = number of molecules / Avogadro's number
number of moles = (2.2x10^17) / (6.02x10^23) = 3.6544 x 10^-7 moles
number of moles = mass / molar mass
mass = number of moles x molar mass
= 1.7 x 10^17/6.022 x 10^23.
The molarity of HBr solution is 0.239 M
calculation
write the equation for reaction
that is LiOH +HBr → LiBr +H20
find the moles of LiOH used
moles =molarity x volume
=0.205 x 29.15 = 5.976 moles
by use of mole ratio between LiOH :HBr which is 1:1 the moles of HBr is therefore= 5.976 moles
Molarity of HCL= moles /volume
= 5.976/25 = 0.239 M
Impure substance, because pure would be dirt from the earth
Answer:
did you ever get the answer lol
Answer:
Approximately
, assuming that this gas is an ideal gas.
Explanation:
Look up the standard room temperature and pressure:
and
.
The question states that the volume of this gas is
.
Convert the unit of all three measures to standard units:
.
.
.
Look up the ideal gas constant in the corresponding units:
.
Let
denote the number of moles of this gas in that
. By the ideal gas law, if this gas is an ideal gas, then the following equation would hold:
.
Rearrange this equation and solve for
:
.
In other words, there is approximately
of this gas in that
.