Answer:
Cu(NO3)2(aq)+Pb(s) ⇌ Pb(NO3)2(aq)+Cu(s)
Explanation:
If we look at the both reactions closely, we will quickly discover that the reaction CuSO4(aq)+Pb(s) ⇌ PbSO4(s)+Cu(s) involves PbSO4.
The compound PbSO4 is insoluble in water and sinks to the bottom of the reaction vessel. When this occurs, the concentration of Pb^2+ becomes low. This will bring about a low voltage in the cell.
On the other hand, Pb(NO3)2 is soluble in water hence the cell voltage in this case is higher than the former.
I think the correct answer from the list of choices above is option B. <span>The chemical combination of two or more different atoms in fixed amounts is called a compound. There are two type of compounds namely the ionic and covalent compounds.</span>
Answer:
Oxidation state shows the total number of electrons which have been removed from an element (a positive oxidation state) or added to an element (a negative oxidation state) to get to its present state
<u>Answer:</u> The standard heat for the given reaction is -138.82 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles.
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H_f_{(product)}]-\sum [n\times \Delta H_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(3\times \Delta H_f_{(CH_4(g))})+(1\times \Delta H_f_{(CO_2(g))})+(4\times \Delta H_f_{(NH_3(g))})]-[(4\times \Delta H_f_{(CH_3NH_2(g))})+(2\times \Delta H_f_{(H_2O(l))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%283%5Ctimes%20%5CDelta%20H_f_%7B%28CH_4%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H_f_%7B%28CO_2%28g%29%29%7D%29%2B%284%5Ctimes%20%5CDelta%20H_f_%7B%28NH_3%28g%29%29%7D%29%5D-%5B%284%5Ctimes%20%5CDelta%20H_f_%7B%28CH_3NH_2%28g%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28l%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(3\times (-74.8))+(1\times (-393.5))+(4\times (-46.1))]-[(4\times (-22.97))+(2\times (-285.8))]\\\\\Delta H_{rxn}=-138.82kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%283%5Ctimes%20%28-74.8%29%29%2B%281%5Ctimes%20%28-393.5%29%29%2B%284%5Ctimes%20%28-46.1%29%29%5D-%5B%284%5Ctimes%20%28-22.97%29%29%2B%282%5Ctimes%20%28-285.8%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-138.82kJ)
Hence, the standard heat for the given reaction is -138.82 kJ
Answer:
Na2O+H2O=2NaOH
Step by step exp.
Given:
Equation Na2O+H2O=NaOH
To find: Balance the equation
Solution:
Taking LHS of the equation
LHS=Na2O+H2O
There is 2 sodium, 2 oxygen,& 2 hydrogen
To balance the equation we have equal number of atom so we multply 2 to the RHS=2NaOH
There fore the equation form is
Na2O+H2O=2NaOH