I believe that this is the answer 520.03 g
Sound waves, I'm pretty sure.
Answer:
Mass of liquid: 20.421g
Density= 1.0109405940594 g/mL
Explanation:
Mass of liquid
To find mass of liquid you take the mass of beaker + liquid (171.223g) and subtract it from the Mass of beaker (beaker without the water). The difference is the answer.
171.223g - 150.802g = 20.421g
Density
To find density you use the formula Mass/Volume. Take the Volume given, and the mass of the liquid you just found.
20.421mL/20.421g = 1.0109405940594 g/mL
The combustion of ammonia in presence of excess oxygen yields NO2 and H2O.
The molar mass of ammonia is 17.02 g/mol
Therefore, moles of ammonia in 43.9 g
= 43.9 /17.02
= 2.579 moles
From the equation the mole ratio of ammonia to nitrogen iv oxide is 4:4
The molar mass of NO2 is 46 g/mol
The number of moles of NO2 is the same as that of ammonia since they have equal ratio,
= 2.579 moles
Therefore, mass of NO2
= 2.579 moles ×46
= 118.634 g
≈ 119 g
Answer:
H2O is the base dissociating for H3O+.