Are 6 and 15 the legs of the triangle?
X^2 -61 =20
X^2= 81x =9 x=-9
Since 6 is positive, it's (x+blank)^2
6/2=3, and (x+3)^2 = x^2+6x+9. We have x^2+6x-2, so we have to add 9 to both sides to get (x+3)^2-2=9, then subtract 9 from both sides to get
(x+3)^2-11=0, or (x+3)^2=11. Square root both sides to get x+3=sqrt(11), and x=sqrt(11)-3, which is approximately 0.32
Answer:
p-e< p < p+e
(0.061 - 0.025) < 0.061 < (0.061 + 0.025)
0.036 < 0.061 < 0.086
Step-by-step explanation:
Given;
Confidence interval CI = (a,b) = (0.036, 0.086)
Lower bound a = 0.036
Upper bound b = 0.086
To express in the form;
p-e< p < p+e
Where;
p = mean Proportion
and
e = margin of error
The mean p =( lower bound + higher bound)/2
p = (a+b)/2
Substituting the values;
p = (0.036+0.086)/2
Mean Proportion p = 0.061
The margin of error e = (b-a)/2
Substituting the given values;
e = (0.086-0.036)/2
e = 0.025
Re-writing in the stated form, with p = 0.061 and e = 0.025
p-e< p < p+e
(0.061 - 0.025) < 0.061 < (0.061 + 0.025)
0.036 < 0.061 < 0.086
Then you are able to substitute in X and it can have a infinite number of values catered to the question.