Answer:
I <u>think</u> your answer is: C. ("An Arrhenius acid increases [H +] in the solution.")
Explanation:
An Arrhenius acid is a substance that dissociates in water to form hydrogen ions (H + ); that is, an acid increases the concentration of H + ions in an aqueous solution. This causes the protonation of water, or the creation of the hydronium (H 3 O +) ion.
Hopefully this helps!
Have a great day! ^^
Answer:
3.74g of ethylene glycol must be added to decrease the freezing point by 0.400°C
Explanation:
One colligative property is the freezing point depression due the addition of a solute. The equation is:
ΔT=Kf*m*i
<em>Where ΔT is change in temperature = 0.400°C</em>
<em>Kf is freezing point constant of the solvent = 1.86°C/m</em>
<em>m is molality of the solution (Moles of solute / kg of solvent)</em>
<em>And i is Van't Hoff constant (1 for a nonelectrolyte)</em>
Replacing:
0.400°C =1.86°C/m*m*1
0.400°C / 1.86°C/m*1 = 0.215m
As mass of solvent is 280.0g = 0.2800kg, the moles of the solute are:
0.2800kg * (0.215moles / 1kg) = 0.0602 moles of solute must be added.
The mass of ethylene glycol must be added is:
0.0602 moles * (62.10g / mol) =
3.74g of ethylene glycol must be added to decrease the freezing point by 0.400°C
<em />
It is the gravitational force pulling on something
Answer:
For the most part, non-metals (excluding Nobel gases) are the most likely to form covalent bonds. Pure covalent bonds are formed between atoms with the same electronegativity, ie. they are trying to hold on to the electrons in the bond with the same strength.