Answer: Pauli exclusion principle: only two electrons can occupy the same orbital and they must have opposite spin directions
Explanation:
Answer:
I think its C I am sorry if I am wrong
The chemical equation given is:
<span>2x(g) ⇄ y(g)+z(s)</span>
Answer: the higher the amount of x(g) the more the forward reacton will occur and the higher the amounts of products y(g) and z(s) will be obtained at equilibrium.
Justification:
As Le Chatellier's priciple states, any change in a system in equilibrium will be compensated to restablish the equilibrium.
The higher the amount, and so the concentration, of X(g), the more the forward reaction will proceed to deal witht he high concentration of X(g), leading to an increase on the concentration of the products y(g) and z (s).
While staying in the same period, if we move from left to right across the period, the atomic radius decreases. The reason is, in a period the number of shells remain the same and the number of electrons and protons increase as we move across the period to the right. The increased electrons and protons attract each other with greater force and hence the atomic size decreases.
So the element on the left most will have the largest atomic radius. So the correct ans is Potassium. Potassium will have the largest atomic size among Potassium, Calcium and Scandium.
Answer:
18 grams of water
Explanation:
The Balance Chemical Reaction is as follow,
2 NH₄NO₃ → 2 N₂ + O₂ + 4 H₂O
According to Equation,
160 g (2 moles) NH₄NO₃ produces = 72 g (4 moles) of H₂O
So,
40 g of NH₄NO₃ will produce = X g of H₂O
Solving for X,
X = (40 g × 72 g) ÷ 160 g
X = 18 g of H₂O
<em>Hope This Helps!</em>