Answer:
Option-A (<span> It would increase from bottom left to top right) is the correct answer.
Explanation:
As we know converting solids into liquids and converting liquids into gases require energy. This energy provided increases the energy of the state and its particles start moving with higher velocities. Therefore, the energy of solids will be lower than liquids and gases respectively. While, liquids have greater energy than solids but less energy than gases. And, gases are the most energetic than solids and liquids.</span>
Hydrocarbons
Hope this helps :)
Answer:
Plastic is used across almost every sector, including to produce packaging, in building and construction, in textiles, consumer products, transportation, electrical and electronics and industrial machinery.
Answer:The ideal gas law is represented mathematically as: PV=nRT. P- pressure, V- volume, n-number of moles of gas, R- ideal gas constant, T- temperature.
Explanation:The ideal gas law is used as a prediction of the behavior of many gases, when subjected to different conditions.
he ideal gas law has so many limitations.
An increase in the pressure or volume, decreases the number of moles and temperature of the gas.
Empirical laws that led to generation of the ideal gas laws, considered two variables and keeping the others constant. This empirical laws include, Boyle's law, Charles's law, Gay Lusaac's law and Avogadro's law.
Given that 1 micrometer or micron (um) is equivalent by definition to 1 x 10^-6 m, this means that 1 square micron (um^2) is equivalent to (1 x 10^-6)^2 m^2, or 1 x 10^-12 m^2.
(2.60 um^2) * (1 x 10^-12 m^2 / 1 um^2) = 2.60 x 10^-12 m^2
Therefore the layer of graphene covers an area of 2.60 x 10^-12 m^2.
<span />