PART A) Yes, the fact that there is a frictional force acting on the satellite generates a loss of energy due to friction. What causes satellite to diminish its orbit during its tour. In fact, many satellites have rectifier systems that allow them to position themselves and remain in their orbit for a long time to avoid being trapped by the Earth's gravity Force and fall into the atmosphere where they would probably be torn apart.
PART B) As a similarity, one could start by mentioning the structure of the two equations are similar and have their own constants who were responsible for supporting them. While the law of gravity speaks of the masses of the bodies the electrostatic law speaks of the charges of the bodies. For both the force is inversely proportional to the square of the distance that separates them.
However, the most notable difference between them is basically their statement. While one of the equations speaks about greavedad the other reflects the electromagnetic phenomena. It should be noted that the force of gravity is much weaker than the electromagnetic force and that the latter has the capacity of attraction and repulsion. While the gravitational force only that of attraction.
Answer: 0.5334
Explanation:
i got it right on accellus :p
Answer: 6.47m/s
Explanation:
The tangential speed can be defined in terms of linear speed. The linear speed is the distance traveled with respect to time taken. The tangential speed is basically, the linear speed across a circular path.
The time taken for 1 revolution is, 1/3.33 = 0.30s
velocity of the wheel = d/t
Since d is not given, we find d by using formula for the circumference of a circle. 2πr. Thus, V = 2πr/t
V = 2π * 0.309 / 0.3
V = 1.94/0.3
V = 6.47m/s
The tangential speed of the tack is 6.47m/s
Answer:
Explanation:
The formula for this is
where F is the gravitational force, G is the gravitational constant, m1 is the mass of one object and m2 is the mass of the other object. We are looking for r, the distance between the centers of their masses.
Filling in:
and moving things around to solve for r:
Doing all that and rounding to the 3 sig fig's you need gives us a distance of 1.55 m
Answer:
Electromagnetic waves differ from mechanical waves in that they do not require a medium to propagate. This means that electromagnetic waves can travel not only through air and solid materials, but also through the vacuum of space.
Explanation: