1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
steposvetlana [31]
2 years ago
9

How to change mass but keep the force the same?

Physics
1 answer:
Scilla [17]2 years ago
8 0

Answer:

The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.

Explanation:

You might be interested in
A sledgehammer is an example of what kind of simple machine?
alisha [4.7K]

I am 95 percent sure the answer in C

3 0
2 years ago
Is a magnetic reversal a threat to life on Earth ? Whay do you say?
KATRIN_1 [288]
I would say yes, a magnetic reversal a threat to life on Earth. Base on articles, it is the end of the world if that happens. <span>Some people believe global cataclysm will occur when Earth's magnetic poles reverse. When north goes south, they say, the continents will lurch in one direction or the other, triggering massive earthquakes, rapid climate change and species extinctions.</span>
5 0
3 years ago
A block-and-tackle pulley hoist is suspended in a warehouse by ropes of lengths 2 m and 3 m. the hoist weighs 430 n. the ropes,
ICE Princess25 [194]
Refer to the diagram shown below.

For horizontal equilibrium,
T₃ cos38 = T₂ cos 50
0.788 T₃ = 0.6428 T₂
T₃ = 0.8157 T₂                (1)

For vertical equilibrium,
T₂ sin 50 + T₃ sin 38 = 430
0.766 T₂ + 0.6157 T₃ = 430
1.2441 T₂ + T₃ = 698.392        (2)

Substitute (1) into (2).
(1.2441 + 0.8157) T₂ = 698.392
T₂ = 339.058 N
T₃ = 0.8157(399.058) = 276.571 N

Answer:
T₂ = 339.06 N
T₃ = 276.57 N

7 0
2 years ago
A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the lens strength (a.k.a, lens p
Kipish [7]

Answer:

20.0 cm

Explanation:

Here is the complete question

The normal power for distant vision is 50.0 D. A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the power of her eyes. What is the closest object she can see clearly?

Solution

Now, the power of a lens, P = 1/f = 1/u + 1/v where f = focal length of lens, u = object distance from eye lens and v = image distance from eye lens.

Given that we require a 10 % increase in the power of the lens to accommodate the image she sees clearly, the new power P' = 50.0 D + 10/100 × 50 = 50.0 D + 5 D = 55.0 D.

Also, since the object is seen clearly, the distance from the eye lens to the retina equals the distance between the image and the eye lens. So, v = 2.00 cm = 0.02 m

Now, P' = 1/u + 1/v

1/u = P'- 1/v

1/u = 55.0 D - 1/0.02 m

1/u = 55.0 m⁻¹ - 1/0.02 m

1/u = 55.0 m⁻¹ - 50.0 m⁻¹

1/u = 5.0 m⁻¹

u = 1/5.0 m⁻¹

u = 0.2 m

u = 20 cm

So, at 55.0 dioptres, the closet object she can see is 20 cm from her eye.

8 0
2 years ago
A long, thin rod parallel to the y-axis is located at x = - 1 cm and carries a uniform positive charge density λ = 1 nC/m . A se
zheka24 [161]

Answer:

The electric field at origin is 3600 N/C

Solution:

As per the question:

Charge density of rod 1, \lambda = 1\ nC = 1\times 10^{- 9}\ C

Charge density of rod 2, \lambda = - 1\ nC = - 1\times 10^{- 9}\ C

Now,

To calculate the electric field at origin:

We know that the electric field due to a long rod is given by:

\vec{E} = \frac{\lambda }{2\pi \epsilon_{o}{R}

Also,

\vec{E} = \frac{2K\lambda }{R}                  (1)

where

K = electrostatic constant = \frac{1}{4\pi \epsilon_{o} R}

R = Distance

\lambda = linear charge density

Now,

In case, the charge is positive, the electric field is away from the rod and towards it if the charge is negative.

At x = - 1 cm = - 0.01 m:

Using eqn (1):

\vec{E} = \frac{2\times 9\times 10^{9}\times 1\times 10^{- 9}}{0.01} = 1800\ N/C

\vec{E} = 1800\ N/C     (towards)

Now, at x = 1 cm = 0.01 m :

Using eqn (1):

\vec{E'} = \frac{2\times 9\times 10^{9}\times - 1\times 10^{- 9}}{0.01} = - 1800\ N/C

\vec{E'} = 1800\ N/C     (towards)

Now, the total field at the origin is the sum of both the fields:

\vec{E_{net}} = 1800 + 1800 = 3600\ N/C

7 0
3 years ago
Other questions:
  • What waves have wavelengths longer than those of visible light? Give an example of how each kind of wave is used.
    13·1 answer
  • There are eight men sitting on a couch. Three legs break and six men leave. How many legs are remaining
    15·2 answers
  • How much kinetic energy does Bryan have?
    13·1 answer
  • A person walks in the following pattern: 3.1 km north, then 2.4 km west, and finally 5.2 km south. a) Sketch the vector diagram
    14·1 answer
  • Guys I need help with my homework please !!!!
    6·1 answer
  • What has to happen to sediment in order for it to become sedimentary rock?
    7·2 answers
  • 7. A 3.0 kg object travels vertically at a constant
    9·1 answer
  • Write down the relation between energy and power​
    13·2 answers
  • Which bolt would experience the greater torque?<br> Α.) Α<br> b.) B <br> c.) both are the same
    8·2 answers
  • A woman launches a boat from one shore of a straight river and wants to land at the point directly on the opposite shore. If the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!