"Speed" is the rate at which distance is being covered .... the ratio
of distance covered to the time it takes.
"Velocity" is the rate at which distance is being covered .... the ratio
of distance covered to the time it takes ... AND the direction in which
it is covered. 'Speed' with the direction of the motion.
Distance in a minute=<span>0.5 times 30=15 meters
distance in a second</span><span>=15 divided by 60=0.25 meters per second
hope it helps</span>
Wave speed = (wavelength) x (frequency)
Wave speed = (0.5 m) x (2 /sec)
<em>Wave speed = 1 m/s</em>
Answer:
the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15
Explanation:
Given that;
speed of car V = 120 km/h = 33.3333 m/s
Reaction time of an alert driver = 0.8 sec
Reaction time of an alert driver = 3 sec
extra time taken by sleepy driver over an alert driver = 3 - 0.8 = 2.2 sec
now, extra distance that car will travel in case of sleepy driver will be'
S_d = V × 2.2 sec
S_d = 33.3333 m/s × 2.2 sec
S_d = 73.3333 m
hence, number of car of additional car length n will be;
n = S_n / car length
n = 73.3333 m / 5m
n = 14.666 ≈ 15
Therefore, the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15
Answer:
C. Their natural predator was gone.