Whatever the statement is, I know one thing for sure: It's NOT included on the list of choices that you've provided.
What is this on, is this on a test?
Kinetic energy, KE, is modeled by the formula

, where m is the mass in kg and v is the velocity in m/s.
In this scenario, mass and one-half are constant but the velocity changes.
You can see that by squaring twice the velocity, that is equal to four times the original KE. Therefore, the answer is 4k.
Answer:
960 m
Explanation:
Given that,
- Speed = 120 m/s
- Time taken = 4 minutes
We have to find the distance covered.
Firstly, let's convert time in seconds.
→ 1 minute = 60 seconds
→ 4 minutes = (4 × 60) seconds
→ 4 minutes = 240 seconds
Now, we know that,
→ Distance = Speed × Time
→ Distance = (4 × 240) m
→ Distance = 960 m
Therefore, distance covered is 960 m.
In a parallel connection, the equivalent resistance is the summation of the inverse of each individual resistances. It is mathematically expressed as 1/ Req = 1/10 +1/20 + 1/25 = 5.263 ohms. Also, the voltage across each resistor is equal to the input voltage, therefore I = 100 / 10 = 10 Amps. I hope this helped you.