Answer: tap water to ice cube
Explanation:
Answer:
The change in entropy is -1083.112 joules per kilogram-Kelvin.
Explanation:
If the water is cooled reversibly with no phase changes, then there is no entropy generation during the entire process. By the Second Law of Thermodynamics, we represent the change of entropy (
), in joules per gram-Kelvin, by the following model:

(1)
Where:
- Mass, in kilograms.
- Specific heat of water, in joules per kilogram-Kelvin.
,
- Initial and final temperatures of water, in Kelvin.
If we know that
,
,
and
, then the change in entropy for the entire process is:


The change in entropy is -1083.112 joules per kilogram-Kelvin.
<u>Answer:</u> The pH of the buffer is 4.61
<u>Explanation:</u>
To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(\frac{[\text{conjuagate base}]}{[\text{acid}]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5B%5Ctext%7Bconjuagate%20base%7D%5D%7D%7B%5B%5Ctext%7Bacid%7D%5D%7D%29)
We are given:
= negative logarithm of acid dissociation constant of weak acid = 4.70
= moles of conjugate base = 3.25 moles
= Moles of acid = 4.00 moles
pH = ?
Putting values in above equation, we get:

Hence, the pH of the buffer is 4.61
Answer:
B
Explanation:
you're moving the decimal 8 spots to the left so it can only be B
Answer is (1) Produces H+ in aqueous solution