The answer for the following answer is answered below.
- <u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
- <u><em>Therefore the option for the answer is "B".</em></u>
Explanation:
Frequency (f):
The number of waves that pass a fixed place in a given amount of time.
The SI unit of frequency is Hertz (Hz)
Time period (T):
The time taken for one complete cycle of vibration to pass a given point.
The SI unit of time period is seconds (s)
Given:
frequency (f) = 100 Hz
wavelength (λ) = 2.0 m
To calculate:
Time period (T)
We know;
According to the formula;
<u>f =</u>
<u></u>
Where,
f represents the frequency
T represents the time period
from the formula;
T = 
T = 
T = 0.01 seconds
<u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
Explanation:
(1). Formula to calculate the potential difference is as follows.
= 
= 
= 
= 
= 38.7 volts
Therefore, magnitude of the potential difference between the two spheres is 38.7 volts.
(2). Now, formula to calculate the energy stored in the capacitor is as follows.
E = 
= 
= 
Thus, the electric-field energy stored in the capacitor is
.
Answer:
0.144 kg of water
Explanation:
From Raoult's law,
Mole fraction of solvent = vapor pressure of solution ÷ vapor pressure of solvent = 423 mmHg ÷ 528.8 mmHg = 0.8
Let the moles of solvent (water) be y
Moles of solute (C3H8O3) = 2 mole
Total moles of solution = moles of solvent + moles of solute = (y + 2) mol
Mole fraction of solvent = moles of solvent/total moles of solution
0.8 = y/(y + 2)
y = 0.8(y + 2)
y = 0.8y + 1.6
y - 0.8y = 1.6
0.2y = 1.6
y = 1.6/0.2 = 8
Moles of solvent (water) = 8 mol
Mass of water = moles of water × MW = 8 mol × 18 g/mol = 144 g = 144/1000 = 0.144 kg
The height of the object will be -5.19 cm
A concave mirror's reflecting surface curves inward and away from the light source. Light is reflected inward to a single focus point via concave mirrors. Concave mirrors, in contrast to convex mirrors, produce a variety of images depending on the object's to the mirror.
Given an object 24.0 cm from a concave mirror creates a virtual image at -33.5 cm. if the image is 7.25 cm tall
So let,
v = Image distance from the mirror = -33.5 cm
u = object distance from the mirror (concave) = 24 cm
hi = Image height = 7.25 cm
h = height of the object = ?
Using below formula to find height of the object
-v/u = hi/h
Putting all value in the formula we get
-(-33.5)/(-24) = 7.25/h
h = -5.19 cm
Therefore the height of the object will be -5.19 cm
Learn more about Concave mirror here:
brainly.com/question/3727024
#SPJ10
It’s both a solid and a liquid. It can thicken and soften depending on how it’s handled. It can be used to cover wounds to stop bleed, and used to drown enemies. Bungee Gum has the properties of both rubber and gum.