Answer:
(a) ε = 1373.8.
(b) The wingtip which is at higher potential.
Explanation:
(a) Finding the potential difference between the airplane wingtips.
Given the parameters
wingspan of the plane is = 18.0m
speed of the plane in north direction is = 70.0m/s
magnetic field of the earth is = 1.20μT
The potential difference is given as:
ε = Blv
where ε = potential difference of wingtips
B = magnetic field of earth
l = wingspan of airplane
v = speed of airplane
ε = 1.2 x 18.0 x 63.6
ε = 1373.8
(b) Which wingtip is at higher potential?
The wingtip which is at higher potential.
Answer:
what this please be clear
Answer:
Option B
Explanation:
Magnification of Microscope is

Mo= Magnification of objective lens and
Me= magnification of the eyepiece.
Both magnifications( of objective and eyepiece) are inversely proportional to the focal length.
Magnification,

when the focal length is less magnification will be high and when the magnification is the low focal length of the microscope will be more.
Thus. Magnification will increase by decreasing the focal length.
The correct answer is Option B i.e. using shorter focal length
Explanation:
An organ is made of several types of tissue and therefore several types of cells. For example, the heart contains muscle tissue that contracts to pump blood, fibrous tissue that makes up the heart valves, and special cells that maintain the rate and rhythm of heartbeats.
Answer:
QC = 122 KJ
QH = 2.64 x 122 = 322 KJ
Explanation:
TH = 500 Degree C = 500 + 273 = 773 K
TC = 20 degree C = 20 + 273 = 293 K
W cycle = 200 KJ
Use the formula for the work done in a cycle
Wcycle = QH - QC
200 = QH - QC ..... (1)
Usse
TH / TC = QH / QC
773 / 293 = QH / QC
QH / QC = 2.64
QH = 2.64 QC Put it in equation (1)
200 = 2.64 QC - QC
QC = 122 KJ
So, QH = 2.64 x 122 = 322 KJ