Answer:

Step-by-step explanation:
In order to make d the subject of the formula, you need to isolate it.
- You started with d-7 = 4d + 3/e
- Move 4d to the left side by subtracting 4d from both sides to cancel it from the right so you have...
d - 7 = 4d + 3/e This will leave you left with -3d - 7 = 3/e
-4d -4d
- Then move over the -7 by adding 7 to both sides...
-3d - 7 = 3/e This will leave you left with -3d = 3/e + 7
+7 +7
- Finally to get d by itself divide both sides of the equation by -3 and you'll be left with...

- You can cancel out the 3 in the -3/3e and make it -1/e so your final answer will be

Answer:
13
Step-by-step explanation:
18 months
……33inches, weight 25.5 pounds
When
he was born = 9 months…20 inches, weight 8, 4 pounds
Every
9 months his height growth is 33-20 = 13 inches, his weight is 25.5-8.4=17.1 pounds
<span>Pounds. This means, for every 9 months, his growth is
13 inches and his weight is 17.1 pounds. For example we can determine his
growth in 3 years.</span>
<span>3
years = 36 months, 36= 9*4, his height will be 4*13 inches= 52 inches, his
weight will be 4*17.1 = 68.4 pounds </span>
For this case, what we must do is fill squares in all the expressions until we find the correct result.
We have then:
x2 + y2 − 4x + 12y − 20 = 0 x2 + y2 − 4x + 12y = 20
x2 − 4x + y2 + 12y = 20
x2 − 4x + (12/2)^2 + y2 + 12y + (-4/2)^2 = 20 + (12/2)^2 + (-4/2)^2
x2 − 4x + (6)^2 + y2 + 12y + (-2)^2 = 20 + (6)^2 + (-2)^2
x2 − 4x + 36 + y2 + 12y + 4 = 20 + 36 + 4
(x − 2)2 + (y + 6)2 = 60
3x2 + 3y2 + 12x + 18y − 15 = 0
x2 + y2 + 4x + 6y − 5 = 0
x2 + y2 + 4x + 6y = 5
x2 + 4x + (4/2)^2 + y2 + 6y + (6/2)^2 = 5 + (4/2)^2 + (6/2)^2
x2 + 4x + (2)^2 + y2 + 6y + (3)^2 = 5 + (2)^2 + (3)^2
x2 + 4x + 4 + y2 + 6y + 9 = 5 + 4 + 9
(x + 2)2 + (y + 3)2 = 18
2x2 + 2y2 − 24x − 16y − 8 = 0
x2 + y2 − 12x − 8y − 4 = 0
x2 + y2 − 12x − 8y = 4
x2 − 12x + (-12/2)^2 + y2 − 8y + (-8/2)^2 = 4 + (-12/2)^2 + (-8/2)^2
x2 − 12x + (-6)^2 + y2 − 8y + (-4)^2 = 4 + (-6)^2 + (-4)^2
x2 − 12x + 36 + y2 − 8y + 16 = 4 + 36 + 16
(x − 6)2 + (y − 4)2 = 56
x2 + y2 + 2x − 12y − 9 = 0
x2 + y2 + 2x - 12y = 9
x2 + 2x + y2 - 12y = 9
x2 + 2x + (2/2)^2 + y2 - 12y + (-12/2)^2 = 9 + (2/2)^2 + (-12/2)^2
x2 + 2x + (1)^2 + y2 - 12y + (-6)^2 = 9 + (1)^2 + (-6)^2
x2 + 2x + 1 + y2 - 12y + 36 = 9 + 1 + 36
(x + 1)2 + (y − 6)2 = 46
Answer:
3/4
Step-by-step explanation:
it's for sure 3/4!!!!!