Answer:-
2328.454 grams
Explanation:-
Volume V = 18.4 litres
Temperature T = 15 C + 273 = 288 K
Pressure P = 1.5 x 10^ 3 KPa
We know universal Gas constant R = 8.314 L KPa K-1 mol-1
Using the relation PV = nRT
Number of moles of oxygen gas n = PV / RT
Plugging in the values
n = (1.5 x 10^3 KPa ) x ( 18.4 litres ) / ( 8.314 L KPa K-1 mol-1 x 288 K)
n = 11.527 mol
Now the balanced chemical equation for this reaction is
2KNO3 --> 2KNO2 + O2
From the equation we can see that
1 mol of O2 is produced from 2 mol of KNO3.
∴ 11.527 mol of O2 is produced from 2 x 11.527 mol of KNO3.
= 23.054 mol of KNO3
Molar mass of KNO3 = 39 x 1 + 14 x 1 + 16 x 3 = 101 grams / mol
Mass of KNO3 = 23.054 mol x 101 gram / mol
= 2328.454 grams
Answer:
9.0 g/cm³
Explanation:
Density can be computed with the formula:

Where:
D = Density
M = Mass
V = Volume
In your problem we are given:
84 cm³ = volume
760 g = mass
So we just plug in our given into the formula:



The answer would then be:
9.0 g/cm³
This problem is describing a gas mixture whose mole fraction of hexane in nitrogen is 0.58 and which is being fed to a condenser at 75 °C and 3.0 atm, obtaining a product at 3.0 atm and 20 °C, so that the removed heat from the system is required.
In this case, it is recommended to write the enthalpy for each substance as follows:

Whereas the specific heat of liquid and gaseous n-hexane are about 200 J/(mol*K) and 160 J/(mol*K) respectively, its condensation enthalpy is 31.5 kJ/mol, boiling point is 69 °C and the specific heat of gaseous nitrogen is about 29.1 J/(mol*K) according to the NIST data tables and
and
are the mole fractions in the gaseous mixture. Next, we proceed to the calculation of both heat terms as shown below:

It is seen that the heat released by the nitrogen is neglectable in comparison to n-hexanes, however, a rigorous calculation is being presented. Then, we add the previously calculated enthalpies to compute the amount of heat that is removed by the condenser:

Finally we convert this result to kJ:

Learn more:
Its obviously D like what are you stupid lol jk don’t take it to heart kid
Answer:
Explanation:
For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. Or Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant.