Answer:
The heating and melting of wax
Explanation:
When a candle is burned the wax heats up, but when cooled it hardens and cannot be put back into it original form.
Hope this helps
Please mark me as Brainliest
LAw of conservation of Energy is an important concept to solve this problem. The energy released is equal to the energy absorbed.
Ice undergoes latent heat. MEaning there is a change in phase but not temperature and the energy is solved by (enthalpy of fusion)(mass) = 333.5J/g)(8.5g). =2834.75J.
This is equal to the energy released by the water. The energy is computed by (mass)(specific heat of water)(temperature change) = (255g)(4.16J/gK)(T)
Final equation is:
2834.75 = 255(4.16)(T)
T = 2.67K
The mass of
that would be formed will be 18.22 grams
<h3>Stoichiometric calculations</h3>
Let us first look at the balanced equation of the reaction:

The mole ratio of Y to
is 2:3.
Mole of 10.0 grams of Y = 10/88.9 = 0.11 moles
Mole of 10.0 grams
= 10/71 = 0.14 moles
3/2 of 0.11 = 0.165. Thus,
is limiting in availability.
Mole ratio of
and
= 3:2
Equivalent mole of
= 2/3 x 0.14 = 0.093 moles.
Mass of 0.093 moles
=0.093 x 195.26 = 18.22 grams
More on stoichiometric calculations can be found here: brainly.com/question/27287858
#SPJ1