When 0.514 g of biphenyl (C12H10) undergoes combustion in a bomb calorimeter, the temperature rises from 25.8 C to 29.4 C. Find ⌂E rxn for the combustion of biphenyl in kJ/mol biphenyl. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 5.86 kJ/ C.
<span>The answer is - 6.30 * 10^3 kJ/mol
</span>
I think the statement is false. Natural elements do reflect light. Almost everything in this world reflect light. Reflection<span> is when </span>light<span> bounces off an object. Hope this answers the question. Have a nice day.</span>
Take a hypothetical sample of exactly 100 grams of the solution.
(16g urea) / (60.06 g urea/mol) = 0.2664 mol urea
((100 g total) - (16g urea)) = 84.0 g H2O = 0.0840 kg H2O
(0.2664 mol) /0.0840 (kg) = 3.17143mol/kg = 3.18m urea
The product of the complete combustion of any fuel (in this case, acetylene) are indeed water and carbon dioxide.
Balancing the combustion reaction,
C2H2 +(5/2) O2 --> 2CO2 + H2O
The number of moles of C2H2 will be,
(12 g) x (1 mole/26 g) = 6/13 mole
Then, the number of moles of O2 is,
(12 g) x (1 mole/32 g) = 3/8 mole
Therefore the limiting reaction is the O2. Getting the amount of CO2 and H2O produced from balancing,
CO2 = (3/8 moles) x (2 moles CO2/ 5/2 mole O2)(44 g/ 1 mole) = 52.8 g
H2O = (3/8 moles) x (1 mole / 5/2 mole O2)(18 g / 1 mole) = 2.7 g